1. Find the amount and compound interest on ₹ 40000 for 2 years at 9% per annum, interest being payable annually.

Solution

Given $P=₹ 40000, r=9$ and $n=2$
Using the formula, $A=P\left(1+\frac{r}{100}\right)^{n}$, we get
$A=₹ 40000\left(1+\frac{9}{100}\right)^{2}=₹ 40000 \times\left(\frac{109}{100}\right)^{2}$
$=₹\left(40000 \times \frac{109}{100} \times \frac{109}{100}\right)=₹ 47524$.
C.I. $=A-P=₹ 47524-₹ 40000=₹ 7524$.
2. Find the amount and compound interest on र 16000 for 3 years at 15% per annum, interest compounded annually.

Solution

$$
\text { Here } P=₹ 16000, r=15 \text { and } n=3
$$

Using the formula, $A=P\left(1+\frac{r}{100}\right)^{n}$, we get

$$
\begin{aligned}
A & =₹ 16000\left(1+\frac{15}{100}\right)^{3}=₹ 16000 \times\left(\frac{115}{100}\right)^{3} \\
& =₹ 16000 \times\left(\frac{23}{20}\right)^{3}=₹\left(16000 \times \frac{23}{20} \times \frac{23}{20} \times \frac{23}{20}\right) \\
& =₹ 24334 \\
\text { C.I. } & =A-P=₹ 24334-₹ 16000=₹ 8334 .
\end{aligned}
$$

3. Find the amount and compound interest on ₹ 30000 for 4 years at 10% per annum, interest compounded yearly.

Solution

Here $\mathrm{P}=₹ 30000, \mathrm{r}=10$ and $\mathrm{n}=4$.
Using the formula, $A=P\left(1+\frac{r}{100}\right)^{n}$, we get

$$
\begin{aligned}
A & =₹ 30000\left(1+\frac{10}{100}\right)^{4}=₹ 30000 \times\left(\frac{11}{10}\right)^{4} \\
& =₹\left(30000 \times \frac{11}{10} \times \frac{11}{10} \times \frac{11}{10} \times \frac{11}{10}\right)=₹ 43923
\end{aligned} \quad \begin{aligned}
& \text { C.I. }=A-P=₹ 43923-₹ 30000=₹ 13923 .
\end{aligned}
$$

4. Calculate the interest earned and the amount due if a sum of ₹ 12500 is invested for 1 year at 12% per annum, interest being compounded semi-annually.

Solution

Since the rate of interest is 12% per annum, therefore, the rate of interest per conversion period (half-yearly) $=\frac{1}{2}$ of $12 \%=6 \%$
As the money is invested for 1 year, therefore, n (the number of conversion periods $)=2$
Here, $\mathrm{P}=₹ 12500, \mathrm{r}=6$ and $\mathrm{n}=2$
Using the formula, $A=P\left(1+\frac{r}{100}\right)^{n}$, we get

$$
\begin{aligned}
& A=₹ 12500\left(1+\frac{6}{10}\right)^{2}=₹ 12500 \times\left(\frac{106}{100}\right)^{2} \\
& =₹\left(12500 \times \frac{53}{50} \times \frac{53}{50}\right)=₹ 14045 \\
& \text { C.I. }=A-P=₹ 14045-₹ 12500=₹ 1545 .
\end{aligned}
$$

5. Find the amount and the compound interest on ₹ 24000 at 10% per annum for $1 \frac{1}{2}$ years, compound interest reckoned half-yearly.
Solution
Since the rate of interest is 10% per annum, therefore, the rate of interest per conversion period (half-yearly) $=\frac{1}{2}$ of $10 \%=5 \%$
As the money is invested for $1 \frac{1}{2}$ year, therefore,
n (the number of conversion periods $)=3$
Here, $\mathrm{P}=₹ 24000, \mathrm{r}=5$ and $\mathrm{n}=3$
Using the formula, $A=P\left(1+\frac{r}{100}\right)^{n}$, we get

$$
\begin{aligned}
& A=₹ 24000\left(1+\frac{5}{100}\right)^{3}=₹ 24000 \times\left(\frac{21}{20}\right)^{3} \\
& =₹\left(24000 \times \frac{21}{20} \times \frac{21}{20} \times \frac{21}{20}\right)=₹ 27783 . \\
& \text { C.I. }=A-P=₹ 27783-₹ 24000=₹ 3783 .
\end{aligned}
$$

6. Find the amount of Rs. 12500 for 2 years compounded annually, the rate of interest being 15% for the first year and 16% for the second year.

Solution

Principal (P) = Rs. 12500
Rate $\left(r_{1}\right)=15 \%$ for first year and $r_{2}=16 \%$ for second year period (n) $=2$ years

$$
\begin{aligned}
& \text { Amount }=P\left(1+\frac{\mathrm{r}_{1}}{100}\right)\left(1+\frac{\mathrm{r}_{2}}{100}\right) \\
& =\text { Rs. } 12500\left(1+\frac{15}{100}\right)\left(1+\frac{16}{100}\right) \\
& =\text { Rs. } 12500 \times \frac{115}{100} \times \frac{116}{100} \\
& =\text { Rs. } 16675
\end{aligned}
$$

7. Calculate the amount and compound interest on Rs. 5120 at $12 \frac{1}{2} \%$ per annum for $2 \frac{1}{5}$ years.

Solution

$$
\begin{aligned}
& \text { Principal }(P)=\text { Rs. } 5120 \\
& \text { Rate }(r)=12 \frac{1}{2} \%=\frac{25}{2} \% \text { p.a } \\
& \text { Period }(\mathrm{n})=2 \frac{1}{5} \text { years } \\
& \begin{aligned}
\text { Amount } & =P\left(1+\frac{25}{2 \times 100}\right)^{2}\left(1+\frac{25}{2 \times 100 \times 5}\right)^{1} \\
\quad= & \text { Rs. } 5120 \times\left(\frac{9}{8}\right)^{2}\left(\frac{41}{40}\right) \\
& =\text { Rs. } 5120 \times \frac{9}{8} \times \frac{9}{8} \times \frac{41}{40} \\
& =\text { Rs. } 6642
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { Compound interest } & =\mathrm{A}-\mathrm{P} \\
& =\text { Rs. } 6642-\text { Rs. } 5120=\text { Rs. } 1522
\end{aligned}
$$

8. Sahil borrowed Rs. 15625 from Canara Bank to buy a refrigerator. If the rate of interest be 16% per annum compounded annually, what payment he will have to make after 2 years 3 months?

Solution

Principal (P) = Rs. 15625
Rate (r) $=16 \%$ p.a.
Period (n) $=2$ years, 3 months $=2 \frac{1}{4}$ years
Amount $(A)=P\left(1+\frac{r}{100}\right)^{n}$

$$
\begin{aligned}
& =\text { Rs. } 15625\left(1+\frac{16}{100}\right)^{2}\left(1+\frac{16}{4 \times 100}\right) \\
& =15625\left(\frac{29}{25}\right)^{2}\left(\frac{26}{25}\right) \\
& =\text { Rs. } 15625 \times \frac{29}{25} \times \frac{29}{25} \times \frac{26}{25} \\
& =\text { Rs. } 21866
\end{aligned}
$$

Hence, he will have to pay Rs. 21866
9. Mohan Lal took a loan of Rs. 25600 from a bank to renovate his house. If the rate of interest be $13 \frac{3}{4} \%$ per annum, find the compound interest, he will pay after 2 years.

Solution

Principal loan $(\mathrm{P})=$ Rs. 25600
Rate $(\mathrm{r})=13 \frac{3}{4}=\frac{55}{4} \%$ p.a.
Period (n) $=2$ years
Amount $(A)=P\left(1+\frac{r}{100}\right)^{n}$

$$
\begin{aligned}
& =25600 \times\left(1+\frac{55}{100 \times 4}\right)^{2} \\
& =\text { Rs. } 25600 \times\left(\frac{91}{80}\right)^{2} \\
& =\text { Rs. } 25600 \times \frac{91}{80} \times \frac{91}{80} \\
& =\text { Rs. } 33124
\end{aligned}
$$

Compound Interest $=\mathrm{A}-\mathrm{P}=$ Rs. $33124-$ Rs. 25600
= Rs. 7524
10. Find the compound interest on Rs. 31250 at 12% per annum for $2 \frac{1}{2}$ years.

Principal $(P)=$ Rs. 31250
Solution

Rate (r) $=12 \%$ p.a.
Period $(n)=2 \frac{1}{2}$ years

$$
\begin{aligned}
\therefore \text { Amount } & =\mathrm{P}\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}} \\
& =31250\left(1+\frac{12}{100}\right)^{2}\left(1+\frac{12}{2 \times 100}\right)^{1} \\
& =31250 \times\left(\frac{28}{25}\right)^{2}\left(\frac{53}{50}\right) \\
& =\text { Rs. } 31250 \times \frac{28}{25} \times \frac{28}{25} \times \frac{53}{50} \\
& =41552
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Compound interest } & =\text { A }-\mathrm{P} \\
& =\text { Rs. } 41552-\text { Rs. } 31250 \\
& =\text { Rs. } 10302
\end{aligned}
$$

