1. For the equation given below, name the dependent and independent variables.

$$
y=\frac{4}{3} x-7
$$

Solution :
$y=\frac{4}{3} x-7$

Dependent variable is y
Independent variable is x .
2. Express the equation $3 x+5 y+15=0$ in the form such that:
a. x is subject to the formula
b. y is dependent variable and x is independent variable.

Solution :
a. $3 x+5 y+15=0$
$3 x=-5 y-15$
$x=\frac{-5 y-15}{3}$
$x=\left(\frac{-5}{3}\right) y-5$
b. $3 x+5 y+15=0$
$5 y=-3 x-15$
$y=\frac{-3 x-15}{5}$
$y=\left(\frac{-3}{5}\right) x-3$
3. Find the value of ' a ' and ' b ' if
a. $(a+2,5+b)=(1,6)$
b. $(2 a+b, a-2 b)=(7,6)$

Solutions :
a. Given; two ordered pairs are equal. $a+2=1$ and $5+b=6$
$\therefore a=-1$ an $b=1$
b. Given; two ordered pairs are equal

$$
\begin{align*}
\therefore \quad 2 a+b & =7 \ldots \ldots \text { (1) } \\
a-2 b & =6 \ldots \ldots \text { (2) } \tag{2}
\end{align*}
$$

On multiplying equation (1) with (2), we get :
$4 a+2 b=14$

Add equation (2) and (3),
$a-2 b=6$
$4 a+2 b=6$
$5 a=20$
$\therefore a=4$

Substituting $\mathrm{a}=4$ in equation (1), we get:

$$
\begin{aligned}
& 2(4)+b=7 \\
& \therefore b=-1 \\
& \therefore a=4 \text { and } b=-1
\end{aligned}
$$

4. In the following, find the coordinates of the point whose abscissa is the solution of the first equation and ordinate is the solution of the second equation:

$$
3-2 x=7 ; 2 y+1=10-2 \frac{1}{2} y
$$

Solution :
$3-2 x=7 ; 2 y+1=10-2 \frac{1}{2} y$
Now $3-2 x=73-7=2 x-4=2 x-2=x$
Again

$$
\begin{aligned}
& 2 y+1=10-2 \frac{1}{2} y \\
& 2 y+1=10-\frac{5}{2} y \\
& 4 y+2=20-5 y \\
& 4 y+5 y=20-2 \\
& 9 y=18 \\
& y=2
\end{aligned}
$$

\therefore The co-ordinates of the point $(-2,2)$
5. In the following, find the co-ordinates of the point whose abscissa is the solution of the first equation and ordinate is the solution of the second equation:

$$
\frac{2 \mathrm{a}}{3}-1=\frac{\mathrm{a}}{2} ; \frac{15-4 \mathrm{~b}}{7}=\frac{2 \mathrm{~b}-1}{3}
$$

Solution :
$\frac{2 \mathrm{a}}{3}-1=\frac{\mathrm{a}}{2} ; \frac{15-4 \mathrm{~b}}{7}=\frac{2 \mathrm{~b}-1}{3}$

Now, $\frac{2 a}{3}-1=\frac{a}{2} \frac{2 a}{3}-\frac{a}{2}=1 \frac{4 a-3 a}{6}=1 a=6$
Again

$$
\begin{aligned}
& \frac{15-4 b}{7}=\frac{2 b-1}{3} \\
& 45-12 b=14 b-7 \\
& 45+7=14 b+12 b \\
& 52=26 b \\
& 2=b
\end{aligned}
$$

\therefore The co-ordinates of the point $(6,2)$
6. Plot point $A(5,-7)$. From point A, draw AM perpendicular to the x-axis and AN perpendicular to the y-axis. Write the coordinates of points M and N.

Solution :

Given $A(5,-7)$

After plotting the given point $A(5,-7)$ on a graph paper. Now let us draw a perpendicular AM from the point $A(5,-7)$ on the x-axis and a perpendicular AN from the point $A(5,-7)$ on the y-axis. As from the graph clearly, we get the co-ordinates of the points M and N

Co-ordinate of the point M is $(5,0)$
Co-ordinate of the point N is $(0,-7)$
7. In rectangle $O A B C$; point O is the origin, $O A=10$ units along x-axis and $A B=8$ units. Find the coordinates of vertices A, B and C.

Solution :

Given that in rectangle OABC ; point 0 is the origin and $0 \mathrm{~A}=10$ units along x -axis therefore we get $\mathrm{O}(0,0)$ and $\mathrm{A}(0,0)$. Also, it is given that $A B=8$ units. Therefore, we get $B(10,8)$ and $C(0,8)$ After plotting the points $O(0,0), A(10,0), B(10,8)$ and $C(0,8)$ on a graph paper; we get the above rectangle OABC , and the required co-ordinates of the vertices are $A(10,0), B(10,8)$ and $C(0,8)$

