Sample Question Paper (TERM - I)

Solutions

Section - A
Solution 1: Option (D) is correct.
For a 2×2 matrix
$A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
Given that
$\mathrm{a}_{\mathrm{ij}}= \begin{cases}1, & \mathrm{i} \neq \mathrm{j} \\ 0, & \mathrm{i}=\mathrm{j}\end{cases}$
Thus,
$a_{11}=0, a_{22}=0, a_{12}=1, a_{21}=1$
So, our matrix becomes
$\mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Now,
$\mathbf{A}^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$=\left[\begin{array}{ll}0(0)+1(1) & 0(1)+1(0) \\ 1(0)+0(1) & 1(1)+0(0)\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Solution 2:Option (C) is correct.
Since, $f(x)=\frac{\mathrm{kx}^{3}}{3}$
Now, differentiate then we get,
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{3 \mathrm{kx}{ }^{2}}{3}$
put $x=3$ then we get,
$f^{\prime}(3)=\frac{k(3)^{3}}{3}$
$4=\frac{k(27)}{3}$
$\mathrm{k}=\frac{12}{27}=\frac{4}{9}$

Solution 3: Option (C) is correct.
Explanation:
$\left|\begin{array}{cc}\sin \frac{\pi}{2} & 1 \\ \left(\sin \frac{\pi}{4}\right)^{2} & 2\end{array}\right|=\left|\begin{array}{ll}1 & 1 \\ \frac{1}{2} & 2\end{array}\right|=2-\frac{1}{2}=\frac{3}{2}$
Solution 4: Option (C) is correct.
Explanation: We know that, if A and B are two non-empty finite sets containing m and n elements, respectively, then the number of one-one and onto mapping (bijective mappings) from A to B is

$$
\begin{aligned}
& \mathrm{n}!\text { if } \mathrm{m}=\mathrm{n} \\
& 0 \text {, if } \mathrm{m} \neq \mathrm{n}
\end{aligned}
$$

Given that, $\mathrm{m}=5$ and $\mathrm{n}=6 \Rightarrow \mathrm{~m} \neq \mathrm{n}$ Number of one-one and onto mapping $=0$
Solution 5: Option (B) is correct.
Explanation: $A^{T}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$$
\text { A. A } \begin{aligned}
\mathrm{T} & =\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \cdot\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \alpha \cdot \cos \alpha+\sin \alpha \cdot \sin \alpha & -\cos \alpha \cdot \sin \alpha+\sin \alpha \cdot \cos \alpha \\
-\sin \alpha \cdot \cos \alpha+\sin \alpha \cdot \cos \alpha & \sin \alpha \cdot \sin \alpha+\cos \alpha \cdot \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I}
\end{aligned}
$$

\{Since, Since, $\left.\cos ^{2} \alpha+\sin ^{2} \alpha=1\right\}$
Solution 6: Option (A) is correct.
Explanation: f: $R \rightarrow R$ is defined as $f(x)=5 x$.
Let $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y}) \Rightarrow 5 \mathrm{x}=5 \mathrm{y} \Rightarrow \mathrm{x}=\mathrm{y}$
Therefore, f is one-one. Also, for any real number (y) in co-domain R, there exists $y / 5$ in R such that
$f\left(\frac{y}{5}\right)=5 f\left(\frac{y}{5}\right)=y$
Therefore, f is onto. Hence, function f is one-one and onto.
Solution 7: Option (A) is correct.
Explanation: $y=\operatorname{cosec} x \times \log x$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\operatorname{cosec} x}{x}+\log x \times(-\operatorname{cosec} x \times \cot x) \\
& \frac{d y}{d x}=-\operatorname{cosec} x \times \cot x \times \log x+\frac{\operatorname{cosec} x}{x}
\end{aligned}
$$

Solution 8:Option (D) is correct.
Explanation: In mathematics, particularly in linear algebra, a skew symmetric (or anti symmetric or antisymmetric) matrix is a square matrix whose transpose equals its negative; that is, it satisfies the condition $A=-A^{t}$.

Solution 9:Option (A) is correct.
Explanation:

$$
\begin{aligned}
y & =e^{-\sin ^{-1} x} \\
\frac{d y}{d x} & =e^{-\sin ^{-1} x \times \frac{d}{d x}\left(-\sin ^{-1} x\right)} \\
& =y \cdot \frac{-1}{\sqrt{1-x^{2}}}=\frac{-y}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Solution 10: Option (D) is correct.
Explanation:

From the graph, it is clear that the point $(2000,0)$ is outside.
Solution 11:Option (A) is correct
Given
$R=\{(a, b):|a-b|$ is a multiple of 4$\}$
$\& A=\{0,1,2,3,4,5,6,7,8,9,10,11,12\}$
Here $\mathrm{a}=1$,
We need to find values of b such that $(a, b) \in R$

a	b	$\|a-b\|$	Is $\|a-b\| a$ multiple of 4
1	1	$\|1-1\|=\|0\|=0$	Yes
1	2	$\|1-2\|=\|-1\|=1$	No
1	3	$\|1-3\|=\|-2\|=2$	No
1	5	$\|1-5\|=\|-4\|=4$	Yes
1	9	$\|1-9\|=\|-8\|=8$	Yes

The set of elements related to 1 are $\{1,5,9\}$

Solution 12: Option (A) is correct.
Explanation: Tangent and normal perpendicular to each other.
$y=3 x^{2}-7 x+5$
$\frac{d y}{d x}=6 x-7$
$\frac{\mathrm{dy}}{\mathrm{dx}}{\underset{(0,5)}{ }=-7, ~}=-2$
\therefore Slope of normal $=\frac{1}{7}$
Equation of normal is
$\frac{(y-5)}{(x-0)}=\frac{1}{7}$
$\Rightarrow 7 y-35=x$
$\Rightarrow \mathrm{x}-7 \mathrm{y}+35=0$
Solution 13: Option (C) is correct.
Explanation: $|\mathrm{x}|$ is not differentiable at $\mathrm{x}=0$
Solution 14: Option (C) is correct.
Since A is singular matrix
Determinant of $A=|A|=0$
$|\mathrm{A}|=\left|\begin{array}{cc}\mathrm{k} & 8 \\ 4 & 2 \mathrm{k}\end{array}\right|$
$0=k(2 k)-4 \times 8$
$0=2 \mathrm{k}^{2}-32$
$32=2 \mathrm{k}^{2}$
$2 \mathrm{k}^{2}=32$
$\mathrm{k}^{2}=16$
$\mathrm{k}= \pm 4$
Solution 15: Option (D) is correct.
Explanation:
$y=\log \left(\cos e^{x}\right)$
$\frac{d y}{d x}=\frac{1}{\cos x} \times \frac{d}{d x}\left(\cos e^{x}\right)=\frac{1}{\cos e^{x}} \times\left(-\sin e^{x}\right) e^{x}=-e^{x} \tan e^{x}$

Solution 16: Option (C) is correct.
Explanation: let $f(x)=5 x^{2}-32 x$

$$
\mathrm{f}^{\prime}(\mathrm{x}) \quad=10 \mathrm{x}-32
$$

$$
10 x-32=0
$$

$\mathrm{f}^{\prime \prime}(\mathrm{x})$ for $\mathrm{x}=3.2$ and $\mathrm{f}^{\prime}(\mathrm{x})<0$ for $\mathrm{x}>3.2$
Solution 17: Option (A) is correct.

$$
\text { Explanation: } \begin{aligned}
f(x) & =x+\frac{1}{x}, x>0 \\
\Rightarrow f^{\prime}(x) & =1-\frac{1}{x^{2}} \\
& =\frac{x^{2}-1}{x^{2}}, x>0
\end{aligned}
$$

As normal to $f(x)$ is \perp to given line

$$
\begin{aligned}
& \Rightarrow\left(\frac{\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right) \times \frac{3}{4}=-1\left(\mathrm{~m}_{1} \mathrm{~m}_{2}=-1\right) \\
& \Rightarrow \mathrm{x}^{2}=4 \Rightarrow \mathrm{x}= \pm 2
\end{aligned}
$$

But $\mathrm{x}>0, \therefore \mathrm{x}=2$
Therefore point $=\left(2, \frac{5}{2}\right)$
Solution 18: Option (A) is correct.
Explanation: $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
Value of $A^{2}-5 A+7 I_{2}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]-5\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]+7\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]-\left[\begin{array}{cc}
15 & 5 \\
-5 & 10
\end{array}\right]+\left[\begin{array}{cc}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Since, all the elements of matrix are zero. So, given matrix is null/zero matrix.
Solution 19: Option (D) is correct.
Explanation: The given matrix is not a skew symmetric matrix as $A^{\prime} \neq-\mathrm{A}$. By Definition; we know, A matrix is a skew- symmetric matrix if $A^{\prime}=-A$.

Solution 20: Option (A) is correct.
Explanation:

$$
\begin{aligned}
y & =\log \sqrt{1-x^{2}}=\frac{1}{2} \log \left(1-x^{2}\right) \\
\frac{d y}{d x} & =\frac{1}{2\left(1-x^{2}\right)} \times(-2 x)=\frac{-x}{1-x^{2}} \\
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{\left(1-x^{2}\right)(-1)-(-x)(-2 x)}{\left(1-x^{2}\right)^{2}} \\
& =\frac{-1+x^{2}-2 x^{2}}{\left(1-x^{2}\right)^{2}}=\frac{-1-x^{2}}{\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

Section - B

Solution 21: Option (A) is correct.
Explanation:
$\mathrm{x}=\operatorname{asec} \theta$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\operatorname{atan} \theta \sec \theta$
$y=b \tan \theta$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{bsec}^{2} \theta$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{b}}{\mathrm{a}} \operatorname{cosec} \theta$
$\Rightarrow \frac{d^{2} y}{d^{2}}=\frac{-b}{a} \operatorname{cosec} \theta \cdot \cot \theta \cdot \frac{d \theta}{d x}=\frac{-b}{a^{2}} \cot ^{3} \theta$
$\left.\therefore \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\right]_{\theta=\frac{\pi}{6}}=\frac{-3 \sqrt{3} \mathrm{~b}}{\mathrm{a}^{2}}$
Solution 22: Option (C) is correct.
Explanation: Z is minimum -24 at $(0,8)$
Solution 23: Option (D) is correct.
Explanation:

Corner points of feasible region	$Z=30 x+50 y$
$(5,0)$	150
$(9,0)$	270
$(0,3)$	150
$(0,6)$	300

Minimum value of Z occurs at two points

Solution 24: Option (B) is correct.
Explanation:
By definition, a relation in Z is said to be reflexive if $x R x, \forall x \in Z$. So,
$\mathrm{a}-\mathrm{a}=0 \Rightarrow 3$ divides $\mathrm{a}-\mathrm{a} \Rightarrow \mathrm{aRa}$. Hence R is reflexive.
Solution 25: Option (A) is correct.
Explanation:
Given function is continuous but not differentiable at $\mathrm{x}=0$
Solution 26: Option (A) is correct.
Explanation:
Let Food X be p and Food Y be q
Formulate the constraints as per statement.
The Constraints are : $p+2 q \geq 15 ; 3 p+2 q \geq 17 ; p+q \leq 6 ; p \geq 0 ; q \geq 0$
And objective function is $Z=16 p+20 q$
By solving the above equations, Corner points will be $(1,7),(1,5),(3,4),(5,1)$ and $(0,6)$
After putting these points in Z , we get the least cost of the mixture, i.e., 100 .
Solution 27: Option (B) is correct.
Explanation:
For bijection on $\mathrm{Z}, \mathrm{f}(\mathrm{x})$ must be one-one and onto. Function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+7$ is many-one as $f(1)=f(-1)$ Range of $f(x)=x^{3}$ is not Z for $x \in Z$. Also $f(x)=4 x+1$ takes only values of type $=4 \mathrm{k}+1$ for $\mathrm{x} \in \mathrm{k} \in \mathrm{Z}$ But $\mathrm{f}(\mathrm{x})=\mathrm{x}+8$ takes all integral values for $\mathrm{x} \in \mathrm{Z}$.

Hence $f(x)=x+8$ is a bijection of Z.
Solution 28: Option (A) is correct.
Explanation:
By definition, a relation in A is said to be reflexive if $x R x, \forall x \in A$. So R is true.
The number of reflexive relations on a set containing n elements is $2^{n^{2}-n}$.
Here $\mathrm{n}=4$.
The number of reflexive relations on a set $\mathrm{A}=2^{12}$

Solution 29: Option (B) is correct.
Explanation:
Given that,

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =2 \mathrm{x}^{3}+9 \mathrm{x}^{2}+12 \mathrm{x}-1 \\
\mathrm{f}^{\prime}(\mathrm{x}) & =6 \mathrm{x}^{2}+18 \mathrm{x}+12 \\
& =6\left(\mathrm{x}^{2}+3 \mathrm{x}+2\right) \\
& =6(\mathrm{x}+2)(\mathrm{x}+1)
\end{aligned}
$$

So, $\mathrm{f}^{\prime}(\mathrm{x}) \leq 0$, for decreasing.
On drawing number line as below:
On drawing number lines as below :

We see that $f^{\prime}(x)$ is decreasing in $(-2,-1)$
Solution 30: Option (B) is correct.
Explanation:

Corner Points	$\mathbf{Z}=7 \mathrm{x}+\mathrm{y}$
$(0,3)$	3
$\left(\frac{1}{2}, \frac{5}{2}\right)$	6
$(0,5)$	5

Solution 31: Option (A) is correct.
Explanation:
Given that, A and B are symmetric matrices.
$\Rightarrow \mathrm{A}=\mathrm{A}^{\prime}$ and $\mathrm{B}=\mathrm{B}^{\prime}$
Now, $(\mathrm{AB}-\mathrm{BA})^{\prime}=(\mathrm{AB})^{\prime}-(\mathrm{BA})^{\prime} \quad . . .1$
$\Rightarrow(\mathrm{AB}-\mathrm{BA})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}-\mathrm{A}^{\prime} \mathrm{B}^{\prime}$
[By reversal law]
$\Rightarrow(\mathrm{AB}-\mathrm{BA})^{\prime}=\mathrm{BA}-\mathrm{AB}[$ From Eq. $(1)] \Rightarrow(\mathrm{AB}-\mathrm{BA})^{\prime}=-(\mathrm{AB}-\mathrm{BA})$
$\Rightarrow(A B-B A)$ is a skew-symmetric matrix.
Solution 32: Option (C) is correct.
Explanation:
We know that, in a square matrix, if $\mathrm{b}_{\mathrm{ij}}=0$ when $\mathrm{i} \neq \mathrm{j}$ then it is said to be a diagonal matrix. Here, $\mathrm{b}_{12}, \mathrm{~b}_{13} \ldots \neq 0$ so the given matrix is not a diagonal matrix.
Now,
$\mathrm{B}=\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]$
$\mathrm{B}^{\prime}=\left[\begin{array}{ccc}0 & 5 & -8 \\ -5 & 0 & -12 \\ 8 & 12 & 0\end{array}\right]=-\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]=-B$
So, the given matrix is a skew-symmetrio matrix, since we know that in a square matrix
B, if $B^{\prime}=-B$, then it is called skew-symmetric matrix
Solution 33: Option (A) is correct.
Explanation:
Given, $A=\left[\begin{array}{lll}2 & -3 & 4\end{array}\right]$
$B=\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right]$,
$X=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$,
$Y=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$

$$
\begin{aligned}
\mathrm{AB}+\mathrm{XY} & =\left[\begin{array}{lll}
2 & -3 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
2
\end{array}\right]+\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] \\
& =[6-6+8]+[2+6+12] \\
& =[8]+[20] \\
& =[28]
\end{aligned}
$$

Solution 34: Option (A) is correct.
Explanation:
Given that the equation of curve is
$y\left(1+x^{2}\right)=2-x \quad \ldots .1$
On differentiating with respect to x, we get
$\therefore \mathrm{y}(0+2 \mathrm{x})+\left(1+\mathrm{x}^{2}\right) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0-1$
$\Rightarrow 2 x y+\left(1+x^{2}\right) \frac{d y}{d x}=-1$
$\Rightarrow \frac{d y}{d x}=\frac{-1-2 x y}{1+x^{2}} \quad \ldots .2$
Since, the given curve passes through x-axis, i.e.,

$$
y=0
$$

$0\left(1+x^{2}\right)=2-x$ [By using Eq. (1)]
$\therefore \mathrm{x}=2$
So the curve passes through the point $(2,0)$.
$\therefore\left(\frac{d y}{d x}\right)_{(2,0)}=\frac{-1-2 \times 0}{1+2^{2}}=-\frac{1}{5}=$ Slope of the curve
\therefore Slope of tangent to the curve $=-\frac{1}{5}$
\therefore Equation of tangent to the curve passsing through $(2,0)$ is

$$
\begin{aligned}
& y-0=-\frac{1}{5}(x-2) \\
& \Rightarrow y+\frac{x}{5}=+\frac{2}{5} \\
& \Rightarrow 5 y+x=2
\end{aligned}
$$

Solution 35: Option (C) is correct.
Explanation:
$x-y$ is an integer
$x-x=0$ is an integer
$\Rightarrow A$ is reflexive
$x-y$ is an integer
$\Rightarrow \mathrm{y}-\mathrm{x}$ is an integer
$\Rightarrow \mathrm{A}$ is symmetric
Now, $x-y, y-z$ are integers
We know, as sum of integers is also an integer
$\Rightarrow(\mathrm{x}-\mathrm{y})+(\mathrm{y}-\mathrm{z})=\mathrm{x}-\mathrm{z}$ is an integer $\Rightarrow \mathrm{A}$ is transitive
Solution 36: Option (B) is correct.
Explanation:
$\mathrm{aRb} \Rightarrow \mathrm{a}$ is brother of b .
This does not mean b is also a brother of a as b can be sister of a.

Hence, R is not symmetric.
$\mathrm{aRb} \Rightarrow \mathrm{a}$ is brother of b
and $b R c \Rightarrow b$ is a brother of c.
So, a is brother of c.
Hence, R is transitive.
Solution 37: Option (D) is correct.
Explanation:
$y=e^{x} \log \sin x$
$\frac{d y}{d x}=\frac{e^{x}}{\sin x} \cos x+e^{x} \log \sin x$
$=e^{x} \cos \mathrm{x}+\mathrm{e}^{\mathrm{x}} \log \sin \mathrm{x}$
$\frac{d^{2} y}{d x^{2}}=-e^{x} \operatorname{cosec}^{2} x+e^{x} \cos x+\frac{e^{x}}{\sin x} \cos x+e^{x} \log \sin x$
$\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=e^{x}\left(-\operatorname{cosec}^{2} x+\cot x\right)$
Solution 38: Option (B) is correct.
Explanation:
Function has critical points $x=\frac{\pi}{2}, \frac{3 \pi}{2}$. At critical points, The sign of $f^{\prime}(x)$ changes,
So the function increases and then decreases in the given interval.
Solution 39: Option (C) is correct.
Explanation:
Given,
$y=\left\{\begin{array}{l}k \cos x, x<\frac{\pi}{4} \\ m \sin x, x>\frac{\pi}{4} \\ y=3, x=\frac{\pi}{4}\end{array}\right.$
L.H.L $=\lim _{x \rightarrow \frac{\pi^{-}}{4}} k \cos x$
$=\lim _{\mathrm{h} \rightarrow 0} \mathrm{k} \cos \left(\frac{\pi}{4}-\mathrm{h}\right)=\mathrm{k} \times \frac{1}{\sqrt{2}}$
$\mathrm{f}\left(\frac{\pi}{4}\right)=\mathrm{LHL}$
$3=\frac{\mathrm{k}}{\sqrt{2}}$
$\mathrm{k}=3 \sqrt{2}$

Given, $\mathrm{f}\left(\frac{\pi}{4}\right)=$ RHL $=\lim _{\mathrm{x} \rightarrow \frac{\pi^{+}}{4}} \mathrm{~m} \sin \mathrm{x}$
$3=m \times \frac{1}{\sqrt{2}}$
$3=\frac{\mathrm{m}}{\sqrt{2}}$
$\mathrm{m}=3 \sqrt{2}$
$k+m=6 \sqrt{2}$
Solution 40: Option (C) is correct.
Explanation:

$$
\begin{aligned}
& \frac{d y}{d x}=5-6 x^{2} \\
& m=5-6 x^{2}
\end{aligned}
$$

Now, $\frac{\mathrm{dm}}{\mathrm{dt}}=-12 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}=-24 \mathrm{x}\left(\because \frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{unit} / \mathrm{sec}\right), \therefore\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right)_{\mathrm{at} \mathrm{x}=3}=-72$

Section - C

Solution 41: Option (D) is correct.
Explanation:

Corner points	Value of Z
$(0,0)$	0 (min.)
$(0,4)$	8
$(3,1)$	11 (max. $)$
$(2,0)$	6

Solution 42: Option (C) is correct.
Explanation: Slope of the tangent
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{d} \theta}{\mathrm{dx} / \mathrm{d} \theta}=\frac{1-\cos \theta}{\sin \theta}$
$\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}=\frac{1-\cos \frac{\pi}{4}}{\sin \frac{\pi}{4}}=\frac{1-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\sqrt{2}-1$

Solution 43: Option (D) is correct.
Explanation : Let $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)^{2}+3$
Then, $\mathrm{f}^{\prime}(\mathrm{x})=2(\mathrm{x}-1)$
For critical points, put $\mathrm{f}^{\prime}(\mathrm{x})=0, \therefore \mathrm{x}=1$
Now,
$f(-3)=(-3-1)^{2}+3=16+3=19$
$f(1)=3$
\therefore Maximum value $=19$
Solution 44: Option (C) is correct.
Explanation :

Corner points	Value of Z
$(0,5)$	2500
$(4,3)$	2300 (min.)
$(0,6)$	3000

Solution 45: Option (D) is correct.
Explanation: $|\mathrm{A}|=\left|\begin{array}{ccc}2 & -1 & -1 \\ 3 & 1 & -1 \\ 1 & 1 & -1\end{array}\right|=2(-1+1)+1(-3+1)-1(3-1)=-4$

Solution 46: Option (C) is correct.
Explanation:
$A=\tan ^{-1} \frac{1}{2}$

$$
\Rightarrow \tan \mathrm{A}=\frac{1}{2}
$$

$A=\tan ^{-1} \frac{1}{2}$
$\Rightarrow \tan \mathrm{A}=\frac{1}{2} \Rightarrow \sin \mathrm{~A}=\frac{1}{\sqrt{5}}$
Solution 47: Option (C) is correct.
Explanation: Since ABC is a triangle,
$\therefore \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$
$\cos (\mathrm{A}+\mathrm{B}+\mathrm{C})=\cos 180^{\circ}=-1$
Solution 48: Option (B) is correct.
Explanation:
Given,
$B=\tan ^{-1} \frac{1}{3}$
$\Rightarrow \tan \mathrm{B}=\frac{1}{2}$
$\therefore \cos \mathrm{B}=\frac{3}{\sqrt{10}}$
$B=\cos ^{-1} \frac{3}{\sqrt{10}}$
$\Rightarrow \mathrm{x}=\frac{3}{\sqrt{10}}$
Solution 49: Option (A) is correct.
Explanation:
$A=\tan ^{-1} \frac{1}{2}$
$\Rightarrow \tan \mathrm{A}=\frac{1}{2}$
$\therefore \sin \mathrm{A}=\frac{1}{\sqrt{5}}$
$A=\sin ^{-1}\left(\frac{1}{\sqrt{5}}\right) \Rightarrow x=\frac{1}{\sqrt{5}}$

Solution 50: Option (D) is correct.
Explanation:

$$
\angle C=\pi-(A+B)=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}
$$

