Sample Question Paper - 1 (TERM - I)

Class XII (Session - 2021-22) Subject- Mathematics (Standard)

Time Allowed: 90 minutes General Instructions:

Maximum Marks: 40

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20.
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

Section - A

In this section, attempt any 16 questions out of the Questions Q1 to Q20 Each Question is of 1 mark weightage.

1. If $A = [a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, \text{ when } i \neq j \\ 0, \text{ when } i = j \end{cases}$, then A^2 is:

 $(A) \begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix}$ $(B) \begin{bmatrix} 1 & 1\\ 0 & 0 \end{bmatrix}$ $(C) \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}$ $(D) \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

- 2. Find the value of k if derivative of the function exists f'(3) = 4, $f(x) = \frac{kx^3}{3}$
 - (A) $k = \frac{4}{5}$ (B) $k = \frac{4}{7}$ (C) $k = \frac{4}{9}$ (D) $k = \frac{4}{11}$
- 3. Calculate the determinant of the given matrix $\begin{cases} \sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} \end{cases}$

$$x \begin{vmatrix} \sin\frac{\pi}{2} & 1 \\ \left(\sin\frac{\pi}{4}\right)^2 & 2 \end{vmatrix}$$

π

. 1

г

- (A) $\frac{1}{2}$ (B) $-\frac{1}{2}$ (C) $\frac{3}{2}$
- (D) None of the above
- 4. If the set A contains 3 elements and the set B contains 6 elements, then the number of bijective mappings from A to B is:
 - (A) 520
 - (B) 10
 - (C) 0
 - (D) None of these
- 5. If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then $A \cdot A^{T} =$
 - (A) Null Matrix
 - (B) I
 - (C) A
 - (D) A
- 6. Let $f: R \to R$ be defined as f(x) = 5x. Choose the correct answer.
 - (A) f is one-one onto
 - (B) f is many-one onto
 - (C) f is one-one but not onto
 - (D) f is neither one-one nor onto

- 7. Find $\frac{dy}{dx}$ where $y = \csc x \log x$ (A) $y = -\csc x \times \cot x \times \log x + \frac{\csc x}{x}$ (B) $y = \csc x \times \cot x \times \log x - \frac{\cot x}{x}$ (C) $y = -\csc x \times \cot x \times \log x - \frac{\cot x}{x}$ (D) $y = \csc x \times \cot x \times \log x + \frac{\cot x}{x}$
- 8. Skew symmetric matrix is also called:
 - (A) symmetric
 - (B) identical matrix
 - (C) square matrix
 - (D) anti symmetric

9. Find
$$\frac{dy}{dx}$$
 where $y = e^{-\sin^{-1}x}$
(A) $\frac{-y}{\sqrt{1-x^2}}$
(B) $-\frac{y}{\sqrt{1+x^2}}$

$$(C) \frac{-e^{\sin^{-1}x}}{\sqrt{1-x^2}}$$
$$(D) \frac{-y}{\sqrt{1-x}}$$

10. For the constraints of a LPP problem given by $x_1 + 2x_2 \le 2000$, $x_1 + x_2 \le$

 $1500, x_2 \le 600$ and $x_1, x_2 \ge 0$ the points does not lie in the positive bounded region.

- (A) (1000,0)
- (B) (0,500)
- (C) (2,0)
- (D) (2000,0)

- 11. Let the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : |a b|$ is a multiple of 4}. Then [1], the equivalence class containing 1 is:
 - (A) {1,5,9}
 - (B) {0,1,2,5}

 - (D) A

12. What is the equation of the normal to the curve $y = 3x^2 - 7x + 5$ at (0,5)?

- (A) x 7y + 35 = 0(B) 7x - 3y + 35 = 0(C) 3x + 7y + 35 = 0
- (D) 3x + 7y + 21 = 0

13. Which of the function is not differentiable everywhere in R?

- (A) $\log x$
- (B) si n x
- (C) |x|
- (D) $3x^3 + 5$

14. Value of k, for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is:

- (A) 4
- (B) −4
- (C) ±4
- (D) 0

15. If $y = \log(\cos e^x)$ then $\frac{dy}{dx}$ will be :

- (A) xta n e^x
- (B) $-e^{x \tan n x}$
- (C) e^{x} ta n e^{x}
- (D) $-e^{x}tan e^{x}$

16. The function $y = 5x^2 - 32x$ has a local minimum in the interval (0,10).

- (A) x = 1
- (B) x = 2
- (C) x = 3.2
- (D) No local minimum

17. The point at which the normal to the curve $y = x + \frac{1}{x}$, x > 0 is perpendicular to

- the line 3x 4y 7 = 0 is:
- $(A)\left(2,\frac{5}{2}\right)$
- (B) $\left(\pm 2, \frac{5}{2}\right)$
- $(C)\left(-\frac{1}{2},\frac{5}{2}\right)$
- $(D)\left(\frac{1}{2},\frac{5}{2}\right)$

18. If A = $\begin{bmatrix} 3 & 1\\ -1 & 2 \end{bmatrix}$ then det(A² - 5A + 7I₂) is equal to:

(A) 0 (B) 1 (C) -1 (D) 2

19. Matrix A =
$$\begin{bmatrix} 0 & 3 & 2 \\ -3 & 3 & -5 \\ -2 & 5 & 0 \end{bmatrix}$$
 is

(A) Skew-symmetric matrix

- (B) Symmetric matrix
- (C) Scalar matrix
- (D) None of these

20. What is second derivative of the function, $y = log(\sqrt{1 - x^2})$.

(A)
$$\frac{-1-x^2}{(1-x^2)^2}$$

(B) $\frac{1-x^2}{(1-x^2)^2}$
(C) $\frac{-1+x^2}{(1-x^2)^2}$
(D) $\frac{1+x^2}{(1-x^2)^2}$

SECTION-B

In this section, attempt any 16 questions out of the Questions 21-40. Each Question is of 1 mark weightage.

21. If $x = \operatorname{asec} \theta$, $y = \operatorname{btan} \theta$, then $\frac{d^2 y}{dx^2}$ at $\theta = \frac{\pi}{6}$ is: (A) $\frac{-3\sqrt{3}b}{a^2}$ (B) $\frac{-2\sqrt{3}b}{a}$ (C) $\frac{-3\sqrt{3}b}{a}$ (D) $\frac{-b}{3\sqrt{3}a^2}$

22. In the given graph, the feasible region for a LPP is shaded. The objective function Z = 2x - 3y, will be minimum at:

23. A linear programming problem is as follows:

```
Minimize Z = 30x + 50y
```

subject to the constraints,

 $3x + 5y \ge 15$ $2x + 3y \le 18$ $x \ge 0, y \ge 0$

In the feasible region, the minimum value of Z occurs at

(A) a unique point

(B) no point

(C) infinitely many points

(D) two points only

24. Let R be the relation in the set of integers Z given by $R = \{(a, b): 3 \text{ divides } a - b\}$.

then R is :

- (A) not reflexive
- (B) reflexive
- (C) symmetric
- (D) transitive.

25. If f(x) = |x|, then the function is continuous but not differentiable at :

- (A) x = 0
- (B) $x \neq 0$
- (C) x = 1
- (D) x = 2
- 26. A dietician wishes to mix together two kinds of food X and y in such a way that the mixture contains at least 15 units of carbohydrate, at least 17 units of protein and at most 6 units of fat. The nutrient contents of 1 kg food is given below:

Food	Carbohydrate	Protein	Fat
X	1	3	1
Y	2	2	1

1 kg of food X costs Rs 16 and 1 kg of food Y cost Rs 20. Find the least cost of the mixture which will produce the required diet.

(A) 100

- (B) 128
- (C) 110
- (D) 99

27. Which of the following functions from *Z* into *Z* are bijections?

- (A) $f(x) = x^3$
- (B) f(x) = x + 8
- (C) f(x) = 4x + 1
- (D) $f(x) = x^2 + 7$

28. Consider the set $A = \{1,3,5,7\}$. The number of reflexive relations on set A is :

- (A) 2^{12}
- (B) 12²
- (C) 2⁴
- (D) 4^2

29. The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing is :

- (A) [−1,∞)
- (B) (−2,−1)
- (C) (−∞, −2]
- (D) [-1,1]

30. Z = 7x + y, subject to $5x + y \le 5, x + y \ge 3, x \ge 0, y \ge 0$.

Maximum value of Z occurs at

- (A) (3,0)
- (B) $\left(\frac{1}{2}, \frac{5}{2}\right)$
- (C) (0,3)
- (D) (0,5)

- 31. If A and B are symmetric matrices of same order, then AB BA is a:
 - (A) Skew-symmetric matrix
 - (B) Symmetric matrix
 - (C) Zero matrix
 - (D) Identity matrix

32. The matrix
$$\begin{bmatrix} 0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0 \end{bmatrix}$$
 is a

- (A) diagonal matrix
- (B) symmetric matrix
- (C) skew symmetric matrix
- (D) scalar matrix

33. If A =
$$\begin{bmatrix} 2 & -3 & 4 \end{bmatrix}$$
, B = $\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$, X = $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and Y = $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ then AB + XY equals

- (A) [28]
- (B) [25]
- (C) [27]
- (D) [26]
- 34. The equation of tangent to the curve $y(1 + x^2) = 2 x$, where it crosses x-axis is :
 - (A) x + 5y = 2
 - (B) x 5y = 2
 - (C) 5x y = 2
 - (D) 5x + y = 2

35. Let R be the set of real numbers then

 $A = \{(x, y) \in R \times R: y - x \text{ is an integer }\}$ is a

- (A) only reflexive
- (B) only symmetric
- (C) transitive relation
- (D) empty relation

- 36. Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is
 - (A) symmetric but not transitive
 - (B) transitive but not symmetric
 - (C) neither symmetric nor transitive
 - (D) both symmetric and transitive

37. What is
$$\frac{d^2y}{dx^2} - \frac{dy}{dx}$$
 of the given function where $y = e^x \log \sin x$

(A) e^x

(B)
$$e^{x}(\operatorname{cosec}^{2} x + \cot x)$$

- (C) $\csc^2 x \cot x$
- (D) $e^{x}(-\csc^{2}x + \cot x)$
- 38. If function, $f(x) = \sin x$, then function in $[0,2\pi]$ is
 - (A) Decreasing
 - (B) Increases and then decreases
 - (C) Continuously increasing
 - (D) Neither increasing nor decreasing

39. What is the value of k + m if the function is given by,

$$y = \begin{cases} k\cos x, x < \frac{\pi}{4} \\ m\sin x, x > \frac{\pi}{4} \text{ is continuous at } \frac{\pi}{4}? \\ y = 3, x = \frac{\pi}{4} \end{cases}$$
(A) $3\sqrt{2}$
(B) $\sqrt{2}$

- (C) $6\sqrt{2}$
- (D) 2√2

- 40. For the curve $y = 5x 2x^3$, If x increases at the rate of 2 units/sec, then at x =
 - 3, the slope of curve is:
 - (A) increasing by 36unit/sec
 - (B) decreasing by 36 unit/sec
 - (C) decreasing by 72 unit/sec
 - (D) increasing by 72 unit/sec

SECTION-C

In this section, attempt any 8 questions. Each question is of 1-mark weightage.

- 41. For an objective function $Z = 3x_1 + 2x_2$, where $x_1, x_2 > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0,0), (0,4), (3,1) and (2,0). The condition on x_1 and x_2 such that the maximum and minimum Z occur at the points (3,1) and (0,0) respectively, then the maximum and minimum values are:
 - (A) Max. = 8, Mini. = 6
 - (B) Max = 6, Mini. = 0
 - (C) Max = 8, Mini. = 0
 - (D) Max. = 11, Mini. = 0

42. The slope of the tangent to the curve $x = 1 - \cos \theta$ and $y = \theta - \sin \theta$ at $\theta = \frac{\pi}{4}$

- is:
- (A) 1
- (B) $\sqrt{2}$
- (C) $\sqrt{2} 1$
- (D) $1 \sqrt{2}$

43. The absolute maximum value of $(x - 1)^2 + 3$ in [-3,1] is:

- (A) 3
- (B) 18
- (C) 20
- (D) 19

44. For an objective function Z = 200x + 500y, subject to the constraints,

 $x + 2y \ge 10,3x + 4y \le 24, x \ge 0$ and $y \ge 0$. Then the minimum value of Z is:

- (A) 2500
- (B) 3000
- (C) 2300
- (D) 2800
- 45. Let $A = \begin{bmatrix} 2 & -1 & -1 \\ 3 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$, then |A| is: (A) 0 (B) 1 (C) 4 (D) -4

Questions 45 - 50 are based on a Case-Study.

In the school project Sheetal was asked to construct a triangle and name it as ABC.

Two angles A and B were given to be equal to $\tan^{-1}\frac{1}{2}$ and $\tan^{-1}\frac{1}{3}$ respectively.

46. The value of sin A is

(A)
$$\frac{1}{2}$$

(B) $\frac{1}{3}$
(C) $\frac{1}{\sqrt{5}}$
(D) $\frac{2}{\sqrt{5}}$

47. $\cos(A + B + C) =$ (A) 1 (B) 0 (C) -1 (D) $\frac{1}{2}$ 48. If B = $\cos^{-1} x$, then x = (A) $\frac{1}{\sqrt{5}}$ (B) $\frac{3}{\sqrt{10}}$ (C) $\frac{1}{\sqrt{10}}$ (D) $\frac{2}{\sqrt{5}}$ 49. If A = $\sin^{-1} x$; then the value of x is:

- (A) $\frac{1}{\sqrt{5}}$ (B) $\frac{2}{\sqrt{5}}$ (C) $\frac{1}{\sqrt{10}}$ (D) $\frac{3}{\sqrt{10}}$
- 50. The third angle, $\angle C =$
 - (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{4}$