	Sample Question Paper (TERM - I)
	Solutions
	Section - A
Ans. 1	(b) Homogeneous, anisotropic
	Explanation: Homogeneity refers to uniformity in composition, which is a
	characteristic property of crystalline solids. Isotropy is when the values of physical
	properties do not change with direction throughout the body of the solid. Crystalline
	solids are anisotropic because the composition of the solid changes with direction,
	hence the physical properties also change with direction.
Ans. 2	(b) Molarity to decrease
	Explanation: An increase in temperature increase the volume of solution and
	therefore it will result in its molarity to decrease.
Ans. 3	(b) (iii) > (ii) > (i)
	Explanation: The reactivity order of alcohols towards halogen acids is $3^{\circ} > 2^{\circ} > 1^{\circ}$
	as the stability of carbocations is of the order $3^{\circ} > 2^{\circ} > 1^{\circ}$.
Ans. 4	(a) (c) < (a) < (b)
	Explanation: The boiling points of isomeric haloalkanes decrease with an
	increase in branching as with an increase in branching surface area
	decreases which leads to a decrease in intermolecular forces. Hence, the
	increasing order of their boiling points is $c < a < b$.
Ans. 5	(a) Propan-1-ol, butan-2-ol, butan-1-ol, pentan-1ol
	Explanation: Boiling point increases with increase in molecular mass of the
	alcohols. Among isomeric alcohols 1° alcohols have higher boiling point than 2°
	alcohols. Thus, correct order is:
	Propan-1-ol < Butan-2-ol < Butan-1-ol < pentan-1-ol
Ans. 6	(C) Amphoteric
	Explanation: Amino acids are amphoteric because they contain both basic
	-NH ₂ group and acidic -COOH group.

Ans. 7	(c) Unit cell
	Explanation: Crystalline solids are composed of many small crystals, each of
	which is called a unit cell. It is a specific term. Monomer is the basic unit for a
	polymer, and atoms make up molecules, which can further arrange themselves
	to form solids, liquids or gases.
Ans. 8	(b) supersaturated
	Explanation: When a small amount of solute is added to its solution, it does not
	dissolve and get precipitated then this type of solution is called as supersaturated
	solution.
Ans. 9	(d) SbH ₃
	Explanation: The strongest reducing agent is SbH_3 due to the presence of
	minimum bond enthalpy.
Ans. 10	$(d) (CH_3)_3 C - I$
	Explanation: $(CH_3)_3C - I$ will undergo S_N^1 reaction most readily as C-I bond is
	weakest, due to the large difference in the size of carbon and iodine.
Ans. 11	(b) (i), (ii), (iii)
	Explanation: Asymmetric/Chiral carbon atom is that in which all of its four
	valencies lie with four different groups or atoms.
Ans. 12	(c) Hydrogen bonds
	Explanation: α -helix structure of protein is stabilised by hydrogen bonds. A
	polypeptide chain forms all possible hydrogen bonds by twisting into right-handed
	helix with the -NH group of each amino acid residue hydrogen bonded to $> C = 0$ of
	an adjacent turn of helix.
Ans. 13	(d) lattice point
	Explanation: The point at which the atoms may be present on the unit cell is
	termed as lattice point. It shows the position of atoms in crystal.
Ans. 14	(b) The relative lowering of vapour pressure is equal to the mole fraction of solute.
	Explanation: According to Raoult's law, for a dilute solution, the relative lowering
	of vapour pressure is equal to the mole fraction of solute.

	
	$\frac{P_A^0 - P_A}{P_A^0} = X_B$
	Where
	$\frac{P_A^0 - P_A}{P_A^0} = \text{Relative lowering of vapour pressure } X_B = \text{mole fraction of solute}$
Ans. 15	(c) SF ₄
	Explanation: SF ₄ has trigonal bi-pyramidal structure.
Ans. 16	(c) 3-bromo-1-chlorocyclohexene
	Explanation:
	Cl
	6
	5 3
	4 Br
	IUPAC name: 3-bromo-1-chlorocyclohexene
Ans. 17	(c) Oxidation by heating with copper followed by reaction with Fehling solution.
	Explanation: Oxidation by heating with copper followed by reaction with Fehling
	solution.
Ans. 18	(b) Guanine
	Explanation: Guanine (G) is the complementary base of cytosine (C) in one stand to
	that in another stand of DNA.
	$C \equiv G$
Ans. 19	(c) 8
	Explanation: Coordination number of a unit cell is defined as the number of
	atoms/ions that surround the central atom/ion. In the case of BCC, the central
	particle is surrounded by 8 particles hence, 8.
Ans. 20	(c) 3.15 gm
	Explanation: For hydrated oxalic acid, $(COOH)_2 \cdot 2H_2O$, molar mass is 126 g/mol.
	Equivalent weight $=\frac{M}{2}=63$
	Normalily = $\frac{N0.of \text{ gram Eq}}{Volume \text{ of solution in L}}$
	$0.1 = \frac{w \times 1000}{63 \times 500}$

	0.1×1000
	$w = \frac{1}{63 \times 500}$
	$x = \frac{6.3}{2} = 3.15g$
	Hence, mass of oxalic acid required is 3.15 g.
Ans. 21	(b) Moisture
	Explanation: Coloured material $+[0] \rightarrow$ Colorless material.
	Therefore, chlorine acts as a bleaching agent only when moisture is present.
Ans. 22	(b) CH ₃ COCH ₂ CH ₂ Br
	Explanation: Due to formation of the conjugate system, it will be most reactive
	towards alc. KOH:
	$CH_3COCH_2CH_2Br + alc.KOH \rightarrow CH_3COCH = CH_2$
Ans. 23	(a) alcohols
	Explanation: Lucas test - Alcohol reacts with concentrated hydrochloric acid in
	presence of anhydrous ${\rm ZnCl}_2$ to form alkyl halides. The three type of alcohols
	undergo this reaction at different rates. Order of rate of reaction is: tertiary $>$
	secondary > primary.
	$R - OH + HCl \xrightarrow{ZnCl_2} R - Cl + H_2O$
Ans. 24	(c) Glucose
	Explanation: The Glucose structure has an aldehyde group and due to which it
	gives a positive test for Fehling's solution. Thus, the right answer is Glucose.
Ans. 25	(d) $I_2 < Br_2 < Cl_2 < F_2$
	Explanation: Fluorine has low heat of dissociation and high heat of hydration which
	more than compensates the lower value of electron affinity. Hence, fluorine is the
	strongest oxidizing agent.
	Bromine and iodine have low dissociation energies than chlorine but they are poor
	oxidizing agents than chlorine. This is due to their small electron affinities and
	smaller hydration energies.

	Section – B	
Ans. 26	(b) CaF ₂	
	Explanation: AB ₂ type stucture breaks down as:	
	$AB_2 \rightleftharpoons A^{2+} + 2 B^-$	
	Similarly, $CaF_2 \rightleftharpoons Ca^{2+} + 2 F^-$	
	\therefore AB ₂ type of structure is present in CaF ₂ .	
Ans. 27	(a) equal to second	
	Explanation: $12g$ urea = $12/60$ mol = 0.2 mol, $86.4g$ sucrose	
	=68.4/342=0.2 mol. As mole fraction of solute is same.	
	Hence, lowering of V.P. is same.	
Ans. 28	(a) Lactose	
	Explanation: Starch and cellulose are polysaccharides, fructose	
	is monosaccharide and lactose are disaccharide.	
Ans. 29	(b) d-orbitals are available for bonding	
	Explanation: Nitrogen does not have vacant d-orbital in the outermost shell.	
	N (7) =1 s^2 ,2 s^2 2 p^3	
Ans. 30	(a) Na	
	Explanation: $2CH_3Br + 2Na \rightarrow CH_3CH_3 + 2NaBr$	
Ans. 31	(d) Helium	
	Explanation: Noble gases can form compounds in which the gases are	
	entrapped in the cavities of crystal lattices. Such compounds are called	
	clathrates. Only Argon, Krypton, Xenon and Radon are known to form	
	clathrates among the noble gases.	
Ans. 32	(d) glucose	
	Explanation: Glucose is the monomer of many of the larger	
	carbohydrates, namely starch, cellulose. Hydrolysis of starch gives	
	glucose.	
Ans. 33	(b) secondary alcohol	
	Explanation: Butan-2-ol is an example of secondary alcohol, as -OH	
	group connected to secondary carbon (connected to two carbon atom).	

	ОН
	H ₃ C ⁻
Ans. 34	(a) High pressure
	Explanation: High pressure increases the boiling point of water so it
	reduces the cooking time.
Ans. 35	(d) NI3
	Explanation: The strongest lewis base is NI3 due to lower
	electronegativity of I. So the tendency of trihalides of N decreases from
	$NI_3 > NBr_3 > NCl_3 > NF_3$ due to increase in electronegativity from I to
	F.
Ans. 36	(b) CH ₃ CH(OH)CH(OH)CH ₃
	Explanation: Only compound B have plane of symmetry in all the given
	compounds thus it has meso form.
	$ \begin{array}{c c} \mathbf{OH} & \mathbf{OH} \\ & \\ \mathbf{CH}_3 - \mathbf{C} - \mathbf{C} - \mathbf{CH}_3 \\ & \\ \mathbf{H} & \mathbf{H} \end{array} $
	Plane of symmetry
Ans. 37	(a) 4,4
	Explanation: Coordination numbers of Zn^{2+} and S^{2-} in the crystal structure
	of wurtzite are 4,4. Sulphide ions occupies ccp while zinc ions occupy
	alternate tetrahedral voids. Number of formula units per unit cell is 4 .
Ans. 38	(a) HCHO
	Explanation:
	O O MgX
	$ \begin{array}{c} O & O MgX \\ \parallel \\ H - C - H + R - MgX \longrightarrow H - C - H \\ \parallel \\ R \end{array} $
	$\xrightarrow{H_2O/H^+} R - CH_2 - OH + Mg \bigvee_{OH}^X$

Ans. 39	(b) 287.8pm
	Explanation: For fcc lattice,
	$4r = a\sqrt{2}$
	and $2r = diameter$
	$=\frac{a\sqrt{2}}{2}=\frac{407\times\sqrt{2}}{2}=287.8$ pm
Ans. 40	(b) 5.08
	Explanation:
	$\Delta T_{\rm f} = K_{\rm f} \times m$
	$(5.45 - 3.55) = K_{\rm f} \times 0.374$
	$\Rightarrow K_{\rm f} = \frac{1.9}{0.374} = 5.08$
Ans. 41	(a) H_3PO_4
	Explanation: H3PO4 has 3P-OH groups, hence they are tribasic.
Ans. 42	(b) Propylene
	Explanation:
	(b) $CH_3 - CH = CH_2 + H_2O \xrightarrow{Conc. H_2SO_4}$ Markowinkoffs rule
	$CH_3 - CH - CH_3$
	OH
	Isopropyl alcohol
Ans. 43	(b) Inert pair effect
	Explanation: Due to inert pair effect $+5$ oxidation state becomes less stable and $+3$
	oxidation state becomes more stable down the group 4
Ans. 44	(d) Monosaccharide
	Explanation: A carbohydrate which cannot be hydrolyzed to simpler
	compounds, is called. Monosaccharide is the simplest carbohydrate which
	cannot be hydrolyze to simpler compounds.
Ans. 45	(c) A is true but R is false.
	Explanation: S1: Pb ²⁺ is more stable because of inert effect.

	I [–] being larger has the tendency to lose the electron easily.
	S2: Smaller and highly electronegative elements like $\rm F^-$ can stabilize
	the higher oxidation state not I ⁻ .
Ans. 46	(c) A is true but R is false.
	Explanation: Bond angle of $H_2S(92^\circ) < H_2O(104^\circ 31)$.
	As the electronegativity of the central atom decreases, bond angle
	decreases. In the present case, S is less electronegative than oxygen.
	Thus bond pairs in $\rm H_2$ S are more away from the central atom than in
	$H_2 0$ and thu, s repulsive forces between bond pairs are smaller
	producing smaller bond angle. Hence, assertion is correct but reason
	is incorrect.
Ans. 47	(b) Both assertion and reason are wrong statements.
	Explanation: The primary structure of protein depicts the sequence of
	amino acids in a chain or gives the positional information in a protein.
	Protein thread is folded in the form of a helix or in the sheet form in the
	secondary structure. The long protein chain is also folded upon itself like
	a hollow wollen ball, giving rise to the tertiary structure. This gives us a
	3-dimensional view of a protein. Tertiary structure is absolutely
	necessary for many biological activities of proteins.
Ans. 48	(a) Both A and R are true and R is the correct explanation of A.
	Explanation: Oxygen is small in size and the lone pair of oxygen repel
	the bond pairs of $0-0$ bond to larger extent than the lone pairs of
	sulphur in S—S bond.
	Sulphur naturally exists in nature as S_8 molecules. On heating these
	rings break and link jointly in to long chains. Hence sulphur has
	greater tendency for catenation than oxygen.

Ans. 49	(a) Both A and R are true and R is the correct explanation of A.
	Explanation: A Frenkel defect is a type of defect in crystalline
	solids wherein an atom is displaced from its lattice position to an
	interstitial site, creating a vacancy at the original site and an
	interstitial defect at the new location within the same element
	without any changes in chemical properties.
	No cation or anion are leaving the crystal. Only the cation is moving
	from one place to another place within the crystal. So, the density of
	crystalline solid will not change.
	Section – C
Ans. 50	(b) 0.51°C
	Explanation:
	$\Delta T = K_{b} \times \frac{W}{m} \times \frac{1000}{W}$
	$0.170 = K_{\rm b} \times \frac{0.450}{60} \times \frac{1000}{22.5}$
	$K_{\rm b} = \frac{0.170 \times 60 \times 22.5}{1000 \times 0.450} = 0.51^{\circ} \text{C}$
Ans. 51	(c) Glucose
	Explanation: Fehling solution generally reduces aldehyde group.
	Only glucose has aldehyde group. So glucose gives positive test for Fehling's
	solution.
Ans. 52	(b) ethers
	Explanation: The Williamson ether synthesis is an organic reaction,
	forming an ether from an organohalide and deprotonated alcohol
	(alkoxide).
	N H ₂ O [©] Na : X :
	CH Sw2 attack R2-X:
	This reaction was developed by Alexander Williamson in

	1850. Typically it involves the reaction of an alkoxide ion with a primary
	alkyl halide via an S_N^2 reaction.
Ans. 53	(b) IF ₇ - pentagonal bipyramidal
	Explanation: $[ICl_2]^-$ –linear, ClF_3 – T-shaped, $[BrF_4]^-$ - Square planar
Ans. 54	(b) 5 bond pairs and one lone pair
	Explanation: It has square pyramidal shape and has 5 bond pairs and one lone
	pair.
Ans. 55	(d) 7
	Explanation: In IF_7 , iodine is the least electronegative halogen, so its highest
	oxidation number (+7) is more stable than those of the lighter member of the
	group.