Sample Question Paper - 2 (TERM - I)
 Class XII (Session - 2021-22)
 Subject- Mathematics (Standard)

Time Allowed: 90 minutes
Maximum Marks: 40
General Instructions:

1. This question paper contains three sections - A, B and C. Each part is compulsory.
2. Section - A has 20 MCQs , attempt any 16 out of 20 .
3. Section - B has 20 MCQs, attempt any 16 out of 20 .
4. Section - C has 10 MCQs, attempt any 8 out of 10 .
5. All questions carry equal marks.
6. There is no negative marking.

SECTION-A

In this section, attempt any 16 questions out of the Questions 21-40.
Each Question is of 1 mark weightage.

Q1: What is the domain of $\cos ^{-1} \mathrm{x}$?
(A) $[-\infty, \infty]$
(B) $(-\infty, \infty)$
(C) $(-1,1)$
(D) $[-1,1]$

Q2: Find $\frac{d y}{d x}$ where $x=\operatorname{acos}^{2} \theta$ and $y=b \sin ^{2} \theta$.
(A) $-\frac{b}{a}$
(B) $-\frac{\mathrm{b}}{\mathrm{a}} \sec \theta$
(C) $-\frac{b}{a} \tan \theta$
(D) $-\frac{b}{a} \cot \theta$

Q3: The tangent to curve $y=3 x^{2}-x^{3}$ at $x=2$ makes an angle θ with positive x-axis. Find the value of θ.
(A) 45°
(B) 0°
(C) 30°
(D) 60°

Q4: For the given matrix, the values of y is
$\left[\begin{array}{cc}x & 3 x-y \\ 2 x+z & 3 y-w\end{array}\right]=\left[\begin{array}{cc}3 & 2 \\ 4 & 7\end{array}\right]$
(A) $x=3$
(B) $x=14$
(C) $y=7$
(D) $y=-2$

Q5: If $y=x^{6}+\log x^{2}$ then the value of $\frac{d y}{d x}$ is
(A) $6 x^{5}-2 x$
(B) $6 x^{5}+\frac{2}{x}$
(C) $6 x^{5}-\frac{2}{x}$
(D) $6 x^{6}+x^{2}$

Q6: If $\mathrm{A}=\left[\begin{array}{cc}3 & 5 \\ 6 & -1\end{array}\right]$ then $\mid \mathrm{A}$ adj $\mathrm{A} \mid$ will be
(A) 95
(B) 0
(C) 950
(D) 957

Q7: Two numbers x and y related to each other as $\mathrm{x}-\mathrm{y}=3$.
What is the value of the numbers such that their product is minimum?
(A) $x=2.5, y=-0.5$
(B) $x=1.5, y=-1.5$
(C) $x=5.5, y=2.5$
(D) $x=1, y=-2$

Q8: The points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangent are parallel to y-axis.
(A) $(\pm 3,0)$
(B) $(0, \pm 3)$
(C) $(\pm 2,0)$
(D) $(0, \pm 2)$

Q9: Objective functions
Maximize: $Z=22 x+18 y$
Constraints: $x+y \leq 20$
$360 x+240 y \leq 5,760$
or $3 x+2 y \leq 48$

$$
x \geq 0, y \geq 0
$$

The maximum $\mathrm{Z}=$
(A) 360
(B) 392
(C) 352
(D) 342

Q10: Which of the following is true for the function $f(x)=\operatorname{In} x+2$ increasing.
(A) Function is strictly increasing in $(1,2)$.
(B) Function is strictly decreasing in $(1,2)$.
(C) Function is constant in $(1,2)$.
(D) None of the above

Q11: What is the equation of the normal to the curve $y=3 x^{2}-7 x+5$ at $(0,5)$?
(A) $x-7 y+35=0$
(B) $7 x-3 y+35=0$
(C) $3 x+7 y+35=0$
(D) $3 x+7 y+21=0$

Q12: R be the relation in the set N given by $R=\{(a, b): a=b-2, b>6\}$.
Then, the correct option is:
(A) $(2,4) \in R$
(B) $(3,8) \in R$
(C) $(6,8) \in R$
(D) $(8,7) \in R$

Q13: All the trigonometric functions have inverse functions irrespective of the domain.
(A) True
(B) False
(C) True but for only sine, cos and tan
(D) None of the above

Q14: If matrix $A=\left[\begin{array}{lll}2 & 3 & 5\end{array}\right]$, then the value of A.A' is:
(A) 38
(B) 26
(C) 39
(D) 28

Q15: The function $y=5 x^{2}-32 x$ has a local minimum in the interval $(0,10)$.
(A) $x=1$
(B) $x=2$
(C) $x=3.2$
(D) No local minimum

Q16: Calculate the value of the given equation $2 C_{11}+C_{12}-3 C_{13}$ where $C_{i j}$ is the cofactor of the a_{ij} element of the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3\end{array}\right]$
(A) Determinant of the given matrix
(B) 0
(C) 10
(D) None of the above

Q17: What is the principal value of $\sin ^{-1}\left(\frac{1}{2}\right)$?
(A) $\frac{\pi}{8}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{12}$
(D) $\frac{\pi}{3}$

Q18: If $A=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]$
then the value of $A^{3}-35 \mathrm{~A}$ will be
(A) A
(B) 2 A
(C) 3 A
(D) 4 A

Q19: Let R be the relation in the set $\{p, q, r\}$ given by $R=\{(p, p),(q, q),(r, r),(p, q)\}$. Then
(A) R is reflexive and symmetric but not transitive
(B) R is reflexive and transitive but not symmetric
(C) R is symmetric and transitive but not reflexive
(D) R is an equivalence relation

Q20: If A is a square matrix such that $A^{2}=A$, then $(I+A)^{2}-3 A$ is:
(A) 2 I
(B) 3 I
(C) I
(D) 4 I

SECTION-B

In this section, attempt any 16 questions out of the Questions 21-40.

Each Question is of 1 mark weightage

Q21: Let $A=\{a, b, c\}$ and $B=\{1,2,3\}$ and $f: A \rightarrow B$ is defined by $\mathrm{f}=\{(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{c}, 3)\}$. The function is:
(A) both one-one and onto
(B) only one-one
(C) only onto
(D) neither of them

Q22: Find the $\frac{d y}{d x}$ of $y^{x}+x^{y}=0$?
(A) $\frac{x^{x} \log y-x^{y} y}{x y^{y-1}+x^{y} \log y}$
(B) $\frac{-\left[y^{x} \log y+x^{y-1} \cdot y\right]}{x y^{x-1}+x^{y} \log x}$
(C) 0
(D) None of these

Q23: Corner points of the feasible region for an LPP are $(0,2),(3,0),(6,0),(6,8)$ and $(0,5)$. Let $F=6 x+4 y$ be the objective function.
The minimum value of F occurs at
(A) $(0,2)$ only
(B) $(3,0)$ only
(C) the mid-point of the line segment joining the points $(0,2)$ and $(3,0)$ only
(D) any point on the line segment joining the points $(0,2)$ and $(3,0)$.

Q24: Consider the curve $\mathrm{y}=\frac{2 \mathrm{x}^{2}}{3}$.
The Slope of the line parallel to tangent to the curve at $x=-1$ is
(A) $\frac{1}{3}$
(B) $\frac{-1}{3}$
(C) $\frac{-4}{3}$
(D) $\frac{2}{3}$

Q25: Which of the following functions from Z into Z are bijections?
(A) $f(x)=x^{5}$
(B) $f(x)=x+7$
(C) $f(x)=6 x+5$
(D) $f(x)=x^{2}+9$

Q26: If $y=\log \left(\frac{1-x^{3}}{1+x^{3}}\right)$, then $\frac{d y}{d x}$ is equal to
(A) $\frac{6 x^{2}}{1-x^{6}}$
(B) $\frac{-6 x^{2}}{1-x^{6}}$
(C) $\frac{1}{4-x^{6}}$
(D) $\frac{-4 x^{2}}{1-x^{6}}$

Q27: A set of values of the variables $x_{1}, x_{2}, x_{3}, \ldots \ldots \ldots, x_{n}$ satisfying the constraints of a L.P.P. is called a:
(A) Feasible solution of L.P.P.
(B) Solution of L.P.P.
(C) Both A and B
(D) None

Q28: If $y=3 \sin x+2 \cos x$, then $y+\frac{d^{2} y}{{d x^{2}}^{2}}$ is :
(A) $2 \sin x+3 \cos x$
(B) 1
(C) 0
(D) $3 \sin x+2 \cos x$

Q29: What is $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}$ of the given function where $y=e^{x} \log \sin x$
(A) e^{x}
(B) $e^{x}\left(\operatorname{cosec}^{2} x+\cot x\right)$
(C) $\operatorname{cosec}^{2} x-\cot x$
(D) $e^{x}\left(-\operatorname{cosec}^{2} x+\cot x\right)$

Q30: Maximize $Z=60 x+30 y$
Subjected to $2 \mathrm{x}+2 \mathrm{y}<18 ; 3 \mathrm{x}+4 \mathrm{y}<34 ; \mathrm{x}, \mathrm{y}>0$
(A) $(0,17 / 2)$
(B) $(2,7)$
(C) $(9,0)$
(D) None of these

Q31: If $y=\frac{k \cos \theta-\sin \theta}{\sqrt{\cos ^{2} \theta-\cos 2 \theta}}$ and $\left(\frac{d y}{d \theta}\right)_{x=30^{\circ}}=1$ then k will be
(A) $-1 / 4$
(B) $-1 / 2$
(C) $1 / 2$
(D) 0

Q32: Find the local maxima and local minima of $f(x)=\frac{1}{x^{2}-2}$.
(A) $x=1$
(B) $x=0$
(C) $x=-1$
(D) $x=7$

Q33: Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}$. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto

Q34: What is the domain of $f(x)=\frac{x^{3}-x^{2}+4 x+7}{(x+11)\left(x^{2}-1\right)}$
(A) R
(B) $\mathrm{R}-\{-11,-1,1\}$
(C) $\mathrm{R}-\{-1,1\}$
(D) $\mathrm{R}-\{11,1\}$

Q35: In the given graph the feasible region for a LPP is shaded.
The objective functionZ $=4 x+y$, will be maximise at point

(A) $(0,0)$
(B) $(20,30)$
(C) $(0,50)$
(D) $(30,0)$

Q36: Let A and B be sets and $f: A \times B \rightarrow B \times A$ such that $f(a, b)=(b, a)$ is
(A) bijective function
(B) surjective
(C) only onto
(D) None of these

Q37: If $y=a(\theta-\sin \theta), x=a(1+\cos \theta)$ then $\frac{d y}{d x}$ will be
(A) $\frac{\cos \theta-1}{\sin \theta}$
(B) $\frac{-\sin \theta}{1-\cos \theta}$
(C) $\frac{1-\cos \theta}{\sin \theta}$
(D) $\frac{-\sin \theta}{1+\sin \theta}$

Q38: If the function $f(\mathrm{x})=\left\{\begin{array}{cc}\frac{4 \mathrm{x}^{2}-9}{2 \mathrm{x}-3}, & \mathrm{x} \neq 3 / 2 \\ \mathrm{k}, & \mathrm{x}=3 / 2\end{array}\right.$ is continuous at $\mathrm{x}=3 / 2$, then k is:
(A) 4
(B) 5
(C) 6
(D) 8

Q39: $\mathrm{Z}=25 \mathrm{x}_{1}+20 \mathrm{x}_{2}$ subject to $\mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0, \mathrm{x}_{1}+\mathrm{x}_{2} \geq 8, \mathrm{x}_{1}+2 \mathrm{x}_{2} \geq 12,5 \mathrm{x}_{1}+$ $2 x_{2} \geq 15$. The minimum value of Z occurs at
(A) $(8,0)$
(B) $(52,154)$
(C) $(72,94)$
(D) $(0,8)$

Q40: If $f(x)=3 x+x^{3}-\frac{1}{8} \sin ^{2} x$, then the Function in $(0.5,3)$
(A) Increasing
(B) Decreasing
(C) Constant
(D) Neither increasing nor decreasing

SECTION-C

In this section, attempt any 8 questions.

Each question is of 1-mark weightage.

A dealer in rural area wishes to purchase a number of sewing machines. He has only Rs 5,760 to invest and has space for at most 20 items for storage. An electronic sewing machine cost him Rs 360 and a manually operated sewing machine Rs 240. He can sell an electronic sewing machine at a profit of Rs 22 and a manually operated machine at a profit of Rs 18. Assume that the electronic sewing machines he can sell is x and that of manually operated machines is y .

Q41: The objective function is
(A) Maximise $Z=360 x+240 y$
(B) Maximise $Z=22 x+18 y$
(C) Minimise $Z=360 x+240 y$
(D) Minimise $Z=22 x+18 y$

Q42: The maximum value of $\sin x \cdot \cos x$ is
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\sqrt{2}$
(D) $2 \sqrt{2}$

Q43: The maximum value of $\left(\frac{1}{x}\right)^{x}$ is :
(A) e
(B) e^{e}
(C) $e^{1 / e}$
(D) $\left(\frac{1}{e}\right)^{1 / e}$

Q44: From the figure, which point is not belongs to feasible region

(A) $(0,2)$
(B) $(3,0)$
(C) $(2,3)$
(D) $(0,0)$

Q45: Which of the given values of x and y make the following pair of matrices equal
$\left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right],\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right]$
(A) $x=\frac{-1}{3}, y=7$
(B) Not possible to find
(C) $y=7, x=\frac{-2}{3}$
(D) $x=\frac{-1}{3}, y=\frac{-2}{3}$

Questions 46-50 are based on a Case-Study.
There are three families A, B and C.
The number of members in these families are given in the table below.

	Men	Women	Children
Family A	3	2	1
Family B	2	4	2
Family C	4	3	2

The daily expenses of each man, woman and child are respectively Rs 200 , Rs 100 , Rs 50

Q46: The total daily expense of family A is
(A) 850
(B) 900
(C) 1,200
(D) 2,950

Q47: The total daily expense of family C is
(A) 850
(B) 900
(C) 1,200
(D) 2,950

Q48: The combined daily expense of all the women is
(A) 850
(B) 900
(C) 1,200
(D) 2,950

Q49: The family with highest expense is
(A) A
(B) B
(C) C
(D) All have same expense

Q50: The combined expense of men in family A and children in family C is
(A) 600
(B) 700
(C) 800
(D) 900

