Sample Question Paper (TERM - I)				
Solutions				
	Section - A			
Ans. 1	(D)			
	Explanation: The cosine function is periodic so to calculate its inverse function we			
	need to make the function bijective.			
	For that we have to consider an interval in which all values of the function exist and			
	do not repeat.			
	Now for the inverse of a function the domain becomes range and the range becomes			
	domain.			
	Thus the range of cosine function, that is, $[-1,1]$ becomes the domain of inverse			
	function.			
Ans. 2	(A)			
	Explanation : $x = a\cos^2 \theta$, $y = b\sin^2 \theta$			
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\mathrm{a}\cos\theta(-\sin\theta), \frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{b}\sin\theta\cos\theta$			
	$\frac{\mathrm{dx}}{\mathrm{d\theta}} = -\mathrm{asin}2\theta, \frac{\mathrm{dy}}{\mathrm{d\theta}} = \mathrm{bsin}2\theta$			
	$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b\sin 2\theta}{-a\sin 2\theta} = -\frac{b}{a}$			
Ans. 3	(B)			
	Explanation: $y = 3x^2 - x^3$			
	$Slope = \frac{dy}{dx} = 6x - 3x^2$			
	$\left.\frac{\mathrm{d}y}{\mathrm{d}x}\right]_{x=2} = 12 - 12 = 0$			
	Slope = $\tan \theta$			
	$0 = \tan \theta$			
	$\tan 0^\circ = \tan \theta$			
	$\theta = 0^{\circ}$			

Ans. 4	(C)				
	Explanation: Since corresponding entries of equal matrices are equal, So				
	$\mathbf{x} = 3$				
	3x - y = 2				
	2x + z = 4				
	3y - w = 7				
	Put the value of $x = 3$ from equation 1 in equation 2				
	3x - y = 2				
	3(3) - y = 2				
	9 - y = 2				
	y = 9 - 2				
	y = 7				
Ans. 5	(B)				
	Explanation: $y = x^6 + \log x^2$				
	$\frac{dy}{dx} = 6x^5 + \frac{1}{x^2} \times 2x = 6x^5 + \frac{2}{x}$				
Ans. 6	(D)				
	Explanation:				
	$adj A = \begin{bmatrix} -1 & -5 \\ -6 & 3 \end{bmatrix}$				
	A(adj A) = $\begin{bmatrix} 3 & 5 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} -1 & -5 \\ -6 & -1 \end{bmatrix}$				
	$ = \begin{bmatrix} -3 - 30 & -15 - 5 \\ -6 + 6 & -30 + 1 \end{bmatrix} $				
	$=\begin{bmatrix} -33 & -20\\ 0 & -29 \end{bmatrix}$				
	$\therefore A(adj A) = -33 \times -29 - 0$				
	= 957				
Ans. 7	(B)				
	Explanation:				
	On applying Second Derivative test, At $x = 1.5 f''(x) > 0$				

Ans. 8	(B)				
	Explanation:				
	The equation of the given curve is $\frac{x^2}{9} + \frac{y^2}{16} = 1$				
	On differentiating both sides with respect to x, we have:				
	$\frac{2x}{9} + \frac{2y}{16}\frac{dy}{dx} = 0$				
	$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{-16\mathrm{x}}{9_{\mathrm{y}}}$				
	The tangent is parallel to the y-axis if the slope of the normal is 0 , which gives				
	$\frac{-1}{\left(\frac{-16x}{9y}\right)} = \frac{9y}{16x} = 0 \Rightarrow y = 0$				
	From , $\frac{x^2}{9} + \frac{y^2}{16} = 1$, for $y = 0 \Rightarrow x = \pm 3$				
Ans. 9	(B)				
	Explanation:				
	Vertices of feasible region are:				
	A(0,20), B(8,12), C(16,0)&O(0,0)				
	Z(A) = 360, Z(B) = 392, Z(C) = 352				
	Max Z = 392				
Ans. 10	(A)				
	Explanation:				
	First derivative is always positive in the given interval.				
Ans. 11	(A)				
	Explanation:				
	Tangent and normal are perpendicular to each other.				
	$y = 3x^2 - 7x + 5$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\mathrm{x} - 7$				
	$\left.\frac{\mathrm{d}y}{\mathrm{d}x}\right]_{(0,5)} = -7$				
	\therefore Slope of normal $=\frac{1}{7}$				

	Equation of normal is $\frac{(y-5)}{(x-0)} = \frac{1}{7}$
	$\Rightarrow 7y - 35 = x \Rightarrow x - 7y + 35 = 0$
Ans. 12	(C)
	Explanation:
	Take $b = 8$,
	$\Rightarrow a = 6.$
	Hence, $(6,8) \in \mathbb{R}$
Ans. 13	(B)
	Explanation:
	For the inverse of a function to exist the function should be bijective which none of
	the trigonometric function is as they are periodic functions.
Ans. 14	(A)
	Explanation:
	$A = \begin{bmatrix} 2 & 3 & 5 \end{bmatrix} \text{ and } A' = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$
	: A. A' = $\begin{bmatrix} 2 & 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} = 4 + 9 + 25 = 38$
Ans. 15	(C)
	Explanation:
	$\operatorname{let} f(x) = 5x^2 - 32x$
	f'(x) = 10x - 32
	10x - 32 = 0
	x = 3.2
	f''(x) > 0
Ans. 16	(B)
	Explanation:
	The sum of the product of co-factors of a row and the elements of another row is
	always 0.

Ans. 17	(B)			
	Explanation:			
	The principal value of $\sin^{-1}\left(\frac{1}{2}\right)$ means that we need to find an angle in the principaal			
	branch of the function where the sine function is equal to $\frac{1}{2}$.			
	Hence the required value is $\frac{\pi}{6}$,			
Ans. 18	(A)			
	Explanation :			
	$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \Rightarrow A^{2} = A \cdot A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$			
	$= \begin{bmatrix} 4+4+4 & 4+4+4 & 4+4+4 \\ 4+4+4 & 4+4+4 & 4+4+4 \\ 4+4+4 & 4+4+4 & 4+4+4 \end{bmatrix} = \begin{bmatrix} 12 & 12 & 12 \\ 12 & 12 & 12 \\ 12 & 12 &$			
	$\Rightarrow A^{3} = A^{2} \cdot A = \begin{bmatrix} 12 & 12 & 12 \\ 12 & 12 & 12 \\ 12 & 12 &$			
	$\Rightarrow 35 \text{ A} = \begin{bmatrix} 70 & 70 & 70 \\ 70 & 70 & 70 \\ 70 & 70 &$			
	$A^{2} - 35 A = \begin{bmatrix} 72 & 72 & 72 \\ 72 & 72 & 72 \\ 72 & 72 &$			
Ans. 19	(B)			
	Explanation:			
	Let R be the relation in the set {p, q, r} is given by:			
	$R = \{(p, p), (q, q), (r, r), (p, q)\}$			
	(a) {(p, p), (q, q), (r, r)} $\in \mathbb{R}$			
	Therefore, R is transitive and reflexive.			
	(b) $(p,q) \in R$ but $(q,p) \notin R$			
	Therefore, R is not symmetric.			
Ans. 20	(C)			
	Explanation:			
	Given $A^2 = A$			
	$\therefore (I + A)^2 - 3A = I^2 + 2IA + A^2 - 3A = I + 2A + A - 3A = I$			

	Section - B				
Ans. 21	(A)				
	Explanation:				
	All the elements in the domain have a unique value in the range.				
	Also, the codomai	Also, the codomain of the function is equal to its range.			
Ans. 22	(B)				
	Explanation:				
	$\mathbf{y}^{\mathbf{x}} + \mathbf{x}^{\mathbf{y}} = 0$				
	or $e^{x \log y} + e^{y \log x}$	= 0			
	Differentiating bo	oth sides w.r.t. x.			
	$y^{x}\left[\frac{x}{y}\frac{dy}{dx} + \log y\right] + x^{y}\left[\frac{y}{x} + \log x \cdot \frac{dy}{dx}\right] = 0$				
	$\left[y^{x} \times \frac{x}{y} + x^{y} \times \log x\right] \frac{dy}{dx} = -[y^{x} \log y + x^{y-1} \cdot y]$				
	$\frac{dy}{dx} = \frac{-[y^{x}\log y + yx^{y-1}]}{[xy^{x-1} + x^{y}\log x]}$				
Ans. 23	(A)				
	Explanation :				
	Corner points	Corresponding value of $F = 6x + 4y$			
	(0,2)	8 ← Minimum			
	(3,0)	18			
	(6,0)	36			
	(6,8)	68 ← Maximum			
	(0,5)	20			
	Hence, minimum	value of F occurs at the point (0,2)	-		

Ans. 24	(C)				
	Explanation:				
	$v = \frac{2x^2}{2x^2}$				
	y - 3				
	Slope of the curve $=$ $\frac{dy}{dx} = \frac{d}{dx} \left(\frac{2x^2}{3}\right) = \frac{2 \times 2x}{3} = \frac{4x}{3}$				
	at $x = -1$				
	$\frac{dy}{dx} = \frac{-4}{3}$				
	Parallel lines have same slopes				
	\therefore Slope of tangent = $\frac{-4}{3}$				
Ans. 25	(B)				
	Explanation:				
	For bijection on Z, f(x) must be one-one and onto.				
	Function $f(x) = x^2 + 9$ is many-one as $f(1) = f(-1)$				
	Range of $f(x) = x^5$ is not Z for $x \in Z$.				
	Also $f(x) = 6x + 5$ takes only values of type = $6k + 5$ for $x \in k \in Z$				
	But $f(x) = x + 7$ takes all integral values for $x \in Z$.				
	Hence $f(x) = x + 7$ is a bijection of Z.				
Ans. 26	(A)				
	Explanation:				
	Given that, $y = \log\left(\frac{1+x^3}{1-x^3}\right)$				
	$y = \log(1 + x^3) - \log(1 - x^3)$				
	Differentiate with respect to x, we have				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} [\log(1+x^3)] - \frac{\mathrm{d}}{\mathrm{d}x} [\log(1-x^3)]$				
	$=\frac{3x^2}{1+x^3} - \frac{-3x^2}{1-x^3} = 3x^2 \left(\frac{2}{(1-x^3)(1+x^3)}\right) = \frac{6x^2}{1-x^6}$				
Ans. 27	(B)				
	Explanation: A set of values of the given variables satisfying the constraints of a L.P.P.				
	is called a solution of L.P.P.				

Ans. 28	(C)				
	Explanation:				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\cos x - 2\sin x$				
	$\frac{d^2y}{dx^2} = -(3\sin x + 2\cos x) = -y$				
	Then $y + \frac{d^2y}{dx^2} = y - y = 0$				
Ans. 29	(D)				
	Explanation : $y = e^{x} \log \sin x$				
	$\frac{dy}{dx} = \frac{e^2}{\sin x} \cos x + e^* \log \sin x = e^x \cos x + e^x \log \sin x$				
	$\frac{d^2y}{dx^2} = e^x \csc^2 x + e^x \cos x + \frac{e^x}{\sin x} \cos x + e^x \log \sin x$				
	$\frac{d^2y}{dx^2} - \frac{dy}{dx} = e^x(-\csc^2 x + \cot x)$				
Ans. 30	(C)				
	Explanation :				
	Explanation :				
	Explanation : Comer points will be (0,0), (2,7), (0,17/2) and (9,0)				
	Explanation :Comer points will be (0,0), (2,7), (0,17/2) and (9,0)After putting these points in <i>Z</i>, we will get a maximum value of an objective function				
	Explanation :Comer points will be (0,0), (2,7), (0,17/2) and (9,0)After putting these points in Z, we will get a maximum value of an objective functionat (9,0) i.e, 540 .				
Ans. 31	Explanation :Comer points will be (0,0), (2,7), (0,17/2) and (9,0)After putting these points in Z, we will get a maximum value of an objective functionat (9,0) i.e, 540 .(A)				
Ans. 31	Explanation :Comer points will be (0,0), (2,7), (0,17/2) and (9,0)After putting these points in Z, we will get a maximum value of an objective function at (9,0) i.e, 540 .(A)Explanation: Given, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - \cos 2\theta}}$				
Ans. 31	Explanation :Comer points will be (0,0), (2,7), (0,17/2) and (9,0)After putting these points in Z, we will get a maximum value of an objective function at (9,0) i.e, 540 .(A)Explanation: Given, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - \cos 2\theta}}$ We can simplify the given function,				
Ans. 31	Explanation : Comer points will be (0,0), (2,7), (0,17/2) and (9,0) After putting these points in <i>Z</i> , we will get a maximum value of an objective function at (9,0) i.e, 540. (A) Explanation: Given, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - \cos 2\theta}}$ We can simplify the given function, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - (\cos^2\theta - \sin^2\theta)}} = \frac{k\cos\theta - \sin\theta}{\sin\theta} = k\cot\theta - 1$				
Ans. 31	Explanation : Comer points will be (0,0), (2,7), (0,17/2) and (9,0) After putting these points in <i>Z</i> , we will get a maximum value of an objective function at (9,0) i.e, 540. (A) Explanation: Given, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - \cos 2\theta}}$ We can simplify the given function, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - (\cos^2\theta - \sin^2\theta)}} = \frac{k\cos\theta - \sin\theta}{\sin\theta} = k\cot\theta - 1$ $\frac{dy}{d\theta} = -k\csc^2\theta$				
Ans. 31	Explanation : Comer points will be (0,0), (2,7), (0,17/2) and (9,0) After putting these points in <i>Z</i> , we will get a maximum value of an objective function at (9,0) i.e, 540. (A) Explanation: Given, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - \cos 2\theta}}$ We can simplify the given function, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - (\cos^2\theta - \sin^2\theta)}} = \frac{k\cos\theta - \sin\theta}{\sin\theta} = k\cot\theta - 1$ $\frac{dy}{d\theta} = -k\csc^2\theta$ $\frac{dy}{d\theta}\Big _{x=30^\circ} = -k \times 2 = 1$				
Ans. 31	Explanation : Comer points will be (0,0), (2,7), (0,17/2) and (9,0) After putting these points in <i>Z</i> , we will get a maximum value of an objective function at (9,0) i.e, 540. (A) Explanation: Given, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - \cos 2\theta}}$ We can simplify the given function, $y = \frac{k\cos\theta - \sin\theta}{\sqrt{\cos^2\theta - (\cos^2\theta - \sin^2\theta)}} = \frac{k\cos\theta - \sin\theta}{\sin\theta} = k\cot\theta - 1$ $\frac{dy}{d\theta} = -k\csc^2\theta$ $\frac{dy}{d\theta}\Big _{x=30^\circ} = -k \times 2 = 1$ $k = \frac{-1}{4}$				

Ans. 32	(B)				
	Explanation:				
	We have,				
	$f(x) = \frac{1}{x^2 - 2} = (x^2 - 2)^{-1}$				
	$f'(x) = -(x^2 - 2)^{-2} \cdot 2x = \frac{-2x}{(x^2 - 2)^2}$ for critical points,				
	f'(x) = 0				
	$\frac{-2x}{(x^2 - 2)^2} = 0$				
	$\mathbf{x} = 0$				
	when $x < 0$, $f'(x) >$ and when $x > 0$, $f'(x) < 0$				
Ans. 33	(C)				
	Explanation:				
	f: R \rightarrow R is defined as f(x) = x ⁴				
	Let $x, y \in R$ such that $f(x) = f(y)$				
	$\Rightarrow x^4 = y^4$				
	$\Rightarrow x = \pm y$				
	\therefore f(x ₁) = f(x ₂) does not imply that x ₁ = x ₂				
	For instance, $f(1) = f(-1) = 1$				
	∴ f is not one-one.				
	Consider an element 2 in co-domain R. It is clear that there does not exist any x in				
	domain R such that $f(x) = 2$.				
	∴ f is not onto.				
	Hence, function f is neither one-one nor onto.				
	The correct answer is D.				
Ans. 34	(B)				
	Explanation: f is defined for all real values then,				
	(i) $x + 11 = 0$ i.e., when $x = -11$ and				
	(ii) $x^2 - 1 = 0$ i.e., when $x = -1, 1$				
	Hence, domain of $f = R - \{-11, -1, 1\}$				

Ans. 35	(D)		
	Explanation:		
	Corner Point	Corresponding value of Z	
	(0,0)	0	
	(30,0)	120 Maximum	
	(20,30)	110	
	(0,50)	150	
	Hence, maximun	n value of Z is 120 at the poir	nt (30,0).
Ans. 36	(A)		
	Explanation:		
	f: $A \times B \rightarrow B \times A$ is defined as $f(a, b) = (b, a)$		
	Let $(a_1, b_1) \cdot (a_2, b_2) \in A \times B$		
	such that $f(a_1, b_1) = f(a_1, b_1)$		
	$\Rightarrow (b_1, a_1) = (b_2)$	₂ ,a ₂)	
	\Rightarrow b ₁ = b ₂ and a ₁ = a ₂		
	$\Rightarrow (a_1, b_1) = (a_2, b_2)$		
	∴ f is one-one.		
	Now, let $(b, a) \in B \times A$ be any element.		
	Then, there exists $(a, b) \in A \times B$ such that $f(a, b) = (b, a)$. [By definition of f]		
	∴ f is onto.		
	Hence, function	is Bijective.	
Ans. 37	(B)		
	Explanation: $\frac{dy}{d\theta} = a(1 - \cos \theta)$		
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = a(0 - \sin\theta)$))	

	$\therefore \frac{\mathrm{d}y}{\mathrm{d}\theta} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\mathrm{d}\theta} = \frac{\mathrm{a}(1-1)^2}{\mathrm{a}(1-1)^2}$	$\frac{1}{\cos\theta} = \frac{\cos\theta - 1}{\cos\theta}$			
	$dx \frac{dx}{d\theta} -a$	$\sin \theta \qquad \sin \theta$			
Ans. 38	(C)				
	Explanation: $\lim_{x \to 3/2}$	f(x) = f(3/2)			
	$\Rightarrow \lim_{x \to 3/2} f(x) = k$				
	$\Rightarrow \lim_{x \to \frac{3}{2}} \frac{(2x-3)(2x+3)}{2x-3} = k$				
	\Rightarrow k = 6				
Ans. 39	(D)				
	Explanation: The m	inimum value of Z oc	curs at (0,8).		
	Corner Points	$Z = 25x_1 + 20x_2$			
	(8,0)	200			
	(52,154)	4,380			
	(0,8)	160 (Minimum)			
Ans. 40	(A)				
	Explanation:				
	$f(x) = 3x + x^3 - \frac{1}{8}\sin^2 x$				
	$f'(x) = 3 + 3x^2 - \frac{1}{8}2\sin x \cos x = 3 + 3x^2 - \frac{1}{8}\sin 2x$				
	We know the maximum value of sin x is 1 Even if we consider the maximum value				
	of i.e., $\sin x = 1$				
	f'(1) > 0				
	f'(0.5) > 0				
	f'(3) > 0				
	\therefore Function is increasing.				

	Section - C			
Ans. 41	(B)			
Ans. 42	(B)			
	Explanation :			
	Let us assume that,			
	$f(x) = \sin x \cos x$			
	Now, we know that			
	$\sin x \cdot \cos x = \frac{1}{2} \sin 2x$			
	$\therefore f'(x) = \frac{1}{2} \cdot \cos 2x \cdot 2 = \cos 2x$			
	Now, $f'(x) = 0$			
	$\Rightarrow \cos 2x = 0$			
	$\Rightarrow \cos 2x = \cos \frac{\pi}{2}$			
	$\Rightarrow x = \frac{\pi}{4}$			
	Also, $f''(x) = \frac{d}{dx} \times \cos 2x = -2 \times \sin 2x$			
	$\therefore \left[f''(x)\right]_{atx=\frac{\pi}{4}} = -2\sin 2 \times \frac{\pi}{4}$			
	$=-2\sin\frac{\pi}{2}=-2<0$			
	$\therefore x = \frac{\pi}{4}$ is point of maxima.			
	$f\left(\frac{\pi}{4}\right) = \frac{1}{2} \times \sin \times 2 \times \frac{\pi}{4} = \frac{1}{2}$			
Ans. 43	(C)			
	Explanation: 4			
	Let $y = \left(\frac{1}{x}\right)^x \Rightarrow \log y = x \cdot \log \frac{1}{x}$			
	$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{1}{\frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right) + \log \frac{1}{x} \cdot 1 = -1 + \log \frac{1}{x}$			

	$\therefore \frac{\mathrm{dy}}{\mathrm{dx}} = \left(\log\frac{1}{\mathrm{x}} - 1\right) \cdot \left(\frac{1}{\mathrm{x}}\right)^{\mathrm{x}}$
	\Rightarrow Now, $\frac{dy}{dx} = 0$
	$\Rightarrow \log \frac{1}{x} = 1 = \log e$
	$\Rightarrow \frac{1}{x} = e$
	$\Rightarrow x = \frac{1}{e}$
	Hence, the maximum value of $\left(\frac{1}{x}\right)^x = (e)^{1/e}$.
A	
Ans. 44	
Ans. 45	(B)
	Explanation:
	It is given that
	$\begin{bmatrix} 3x+7 & 5\\ y+1 & 2-3x \end{bmatrix} = \begin{bmatrix} 0 & y-2\\ 8 & 4 \end{bmatrix}$
	Equating the corresponding elements, we get
	$3x + 7 = 0 \Rightarrow x = -\frac{7}{3}$
	$5 = y - 2 \Rightarrow y = 7$
	y + 1 = 8
	\Rightarrow y = 7
	2 - 3x = 4
	$\Rightarrow x = -\frac{2}{3}$
	We find that on comparing the corresponding elements of the two matrices, we get
	two different values of x, which is not possible.
	Hence, it is not possible to find the values of x and y for which the given matrices
	are equal.
Ans. 46	(A)
	Explanation: Expense of family A

	$= \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 200\\ 100\\ 50 \end{bmatrix} = \begin{bmatrix} 850 \end{bmatrix}$
Ans 47	(()
71115. 17	Evaluation
	Explanation.
	Expense of family C
	$= \begin{bmatrix} 4 & 3 & 2 \end{bmatrix} \begin{bmatrix} 200\\ 100\\ 50 \end{bmatrix} = \begin{bmatrix} 1200 \end{bmatrix}$
Ans. 48	(B)
	Explanation:
	Combined expense of women
	$= \begin{bmatrix} 2 & 4 & 3 \end{bmatrix} \begin{bmatrix} 100\\ 100\\ 100 \end{bmatrix} = \begin{bmatrix} 900 \end{bmatrix}$
Ans. 49	(C)
	Explanation:
	Most expensive family is C with an expense of Rs 1200.
Ans. 50	(B)
	Explanation:
	$\begin{bmatrix} 3 & 2 \end{bmatrix} \begin{bmatrix} 200\\ 50 \end{bmatrix} = \begin{bmatrix} 700 \end{bmatrix}$