Solutions Section - A le - dipole interaction ation: Polar molecule will act as a dipole. rease intemperature ation: Because of increase in kinetic energy of gas molecules with
le - dipoleinteraction tion: Polar molecule will act as a dipole. ease intemperature
tion: Polar molecule will act as a dipole.
ease intemperature
-
tion: Because of increase in kinetic energy of gas molecules with
2 Tadas of mer case in mineric energy of gas inforcedies with
rature their tendency to escape from the liquid will increase.
nonia
tion: Urea on reaction with NaOH liberates ammonia.
$IH_2 + 2NaOH \rightarrow Na_2CO_3 + 2NH_3 \uparrow$
< (a) < (b)
ation: The boiling points of isomeric haloalkanes decrease with an
e in branching as with an increase in branching surface area
ses which leads to a decrease in intermolecular forces. Hence, the
ing order of their boiling points is $c < a < b$.
ofthese
tion: Oxidation of alcohols to aldehydes is partial oxidation; aldehydes are
oxidized to carboxylic acids. Conditions required for making aldehydes
and distillation.
yde formation, the temperature of the reaction should be kept above
ing point of the aldehyde and below the boiling point of the alcohol.
ts useful for the transformation of primary alcohols to aldehydes are
ly also suitable for the oxidation of secondary alcohols to ketones.
nclude:
Chromium based reagents, such as Collins reagent (CrO ₃ ·Py ₂)
another useful reagent is PCC (pyridinium chlorochromate) oxidises
orimary alcohol to aldehyde
Ieat in the presence of Cu at 573K.

Ans. 6	(d) Salts
	Explanation: Amino acids are water-soluble, high melting solids and behave
	like salts rather than simple amines or carboxylic acids. This behaviour is
	due to the presence of both acidic (carboxyl group) and basic (amino
	group) groups in the same molecule. In aqueous solution, the carboxyl
	group can lose a proton and amino group can accept a proton, giving rise to
	a dipolar ion known as zwitter ion. This is neutral but contains both
	positive and negative charges.
Ans. 7	(b) $2.786 \times 10^{-23} \text{ cm}^3$
	Explanation: $a^3 = \frac{M \times Z}{N_A \times d}$
	$=\frac{50\times2}{20}$
	$= \frac{50 \times 2}{6.02 \times 10^{23} \times 5.96}$ $= 2.787 \times 10^{-23} cm^3$
Ans. 8	(a) A hypertonicsolution
	Explanation: Hypertonic solutions are more concentrated than the plant
	cell. The water from inside the cytoplasm of the cell diffuses out and the
	plant cell is said to have become flaccid. The cytoplasm has also shrunk and
	pulled away from the cell wall. This phenomenon is called plasmolysis.
Ans. 9	(c)Oxidation of NH ₃ to NO ₂
	Explanation: All the steps including oxidation of NH ₃ to NO, oxidation of NO to
	NO_2 and absorption of NO_2 in water are the fundamental steps for the production
	of nitric acid.
Ans. 10	(a) Secondary butylchloride
	Explanation: Secondary butyl chloride is optically active because it has chiral
	carbon atom marked*
	$CH_3 - \stackrel{*}{CH} - CH_2^- CH_3$
	Cl
Ans. 11	(a) Methanamine (CH ₃ NH ₂)

	Explanation: CH ₃ Cl + NH ₃ → CH ₃ NH ₂ + HCl
	Ammonia molecule is a nucleophile in nature as it has unpaired electrons.
	This nucleophile attacks the chloromethane CH3Cl molecule and forms
	methylamine or methenamine by a nucleophilic substitution reaction
	mechanism. The carbon atom is partially positive in the molecule, due to the
	electronegativity of the halide attached which is partially negative. The
	electron-rich nucleophile attacks the positive ion, causing the halide ion to be
	separated from the molecule.
Ans. 12	(d) primary structure
	Explanation: Proteins may have one or more polypeptide chains. Each
	polypeptide in a protein has amino acids linked with each other in a specific
	sequence and it is this sequence of amino acids that is said to be the primary
	structure of that protein. Thus the most appropriate structure for knowing
	about the sequence of nucleotides in the DNA chain is its primary structure.
Ans. 13	(d) Quartz
	Explanation: Quartz is not amorphous solids. It is crystalline.
Ans. 14	Explanation: Quartz is not amorphous solids. It is crystalline. (c) $\Delta H_{\rm mix} = 0$
Ans. 14	
Ans. 14	(c) $\Delta H_{\text{mix}} = 0$
Ans. 14 Ans. 15	(c) $\Delta H_{\rm mix}=0$ Explanation: For ideal solution there is no evolution or absorption of heat
	(c) $\Delta H_{\rm mix}=0$ Explanation: For ideal solution there is no evolution or absorption of heat on mixing.
	(c) $\Delta H_{\rm mix}=0$ Explanation: For ideal solution there is no evolution or absorption of heat on mixing. (c) Ozone
	(c) $\Delta H_{\rm mix} = 0$ Explanation: For ideal solution there is no evolution or absorption of heat on mixing. (c) Ozone Explanation: Sorret established the formula of ozone and pointed out that
Ans. 15	(c) $\Delta H_{\rm mix} = 0$ Explanation: For ideal solution there is no evolution or absorption of heat on mixing. (c) Ozone Explanation: Sorret established the formula of ozone and pointed out that ozone is an allotrope of oxygen.
Ans. 15	(c) $\Delta H_{\rm mix} = 0$ Explanation: For ideal solution there is no evolution or absorption of heat on mixing. (c) Ozone Explanation: Sorret established the formula of ozone and pointed out that ozone is an allotrope of oxygen. (a) 1,2-dichloroethane
Ans. 15	 (c) ΔH_{mix} = 0 Explanation: For ideal solution there is no evolution or absorption of heat on mixing. (c) Ozone Explanation: Sorret established the formula of ozone and pointed out that ozone is an allotrope of oxygen. (a) 1,2-dichloroethane Explanation: Dihaloalkanes having the same halogen are classified as
Ans. 15	 (c) ΔH_{mix} = 0 Explanation: For ideal solution there is no evolution or absorption of heat on mixing. (c) Ozone Explanation: Sorret established the formula of ozone and pointed out that ozone is an allotrope of oxygen. (a) 1,2-dichloroethane Explanation: Dihaloalkanes having the same halogen are classified as geminal halides or gem- dihalides and vicinal halides or vic-dihalides. Gem-
Ans. 15	(c) $\Delta H_{\rm mix} = 0$ Explanation: For ideal solution there is no evolution or absorption of heat on mixing. (c) Ozone Explanation: Sorret established the formula of ozone and pointed out that ozone is an allotrope of oxygen. (a) 1,2-dichloroethane Explanation: Dihaloalkanes having the same halogen are classified as geminal halides or gem- dihalides and vicinal halides or vic-dihalides. Gem-dihalides are molecules where halogen atoms are present on the same
Ans. 15	$ \begin{array}{l} \textbf{(c)} \ \Delta H_{\text{mix}} = 0 \\ \textbf{Explanation:} \ \text{For ideal solution there is no evolution or absorption of heat} \\ \text{on mixing.} \\ \textbf{(c)} \ \text{Ozone} \\ \textbf{Explanation:} \ \text{Sorret established the formula of ozone and pointed out that} \\ \text{ozone is an allotrope of oxygen.} \\ \textbf{(a)} \ 1,2\text{-dichloroethane} \\ \textbf{Explanation:} \ \text{Dihaloalkanes having the same halogen are classified as} \\ \text{geminal halides or gem-dihalides and vicinal halides or vic-dihalides.} \ \text{Gem-dihalides are molecules where halogen atoms are present on the same} \\ \text{carbon atom where Vic-dihalides are those dihaloalkanes where the halogen} \\ \end{array} $

halogen atoms cannot occur in the molecule. 1,2-dichloroethane contains two carbon atoms with adjacent halogen atoms. Ethylidene chloride, as its common name states, is a gem-dihalide. Allyl chloride contains only one chlorine atom. (b) Phenol

Ans. 17

Explanation:

- Catechol is o- hydroxyl phenol or Catechol also known as pyrocatechol or 1,2 dihydroxybenzene,
- Resorcinol is m hydroxyphenol
- Quinol is p hydroxyphenol or benzene- 1,4 diol is an aromatic organic compound that is a type of phenol, a derivative of benzene.

Ans. 18 (a) Glycogen

Explanation: Glycogen is stored in the liver of animals.

Ans. 19 (c) 14

Explanation: According to Bravais, there are only 14 possible ways of arranging points in space lattice from the 7 crystal systems such that, all the lattice points have exactly the same surrounding.

(b) positive deviation from Raoult's Law. Ans. 20

Explanation: Positive deviations from Raoult's law are noticed when

- (i) Exp. value of vapor pressure of mixture is more than calculated value.
- (ii) Exp. value of boiling point of mixture is less than calculated value.

(iii)
$$\Delta H_{\text{mixing}} = + \text{ve}$$

(iv)
$$\Delta V_{\text{mixing}} = + \text{ve}$$

Ans. 21	(a) SF ₆ and HF
	Explanation: $4 F_2 + H_2 S \rightarrow SF_6 + 2 HF$
Ans. 22	(b) CH ₃ CH ₂ CH ₂ Cl
	Explanation: The forces of attraction between the molecules of a compound get
	stronger as they get bigger in size and have more electrons. Also, for a straight-
	chain compound, the points of interaction between the molecules are more than
	for a branched compound having the same molecular formula. Thus
	CH ₃ CH ₂ CH ₂ CH ₂ Cl has the highest melting point since it is the longest chain
	compound among the given options.
Ans. 23	(a) tertiary alcohols
	Explanation: The Grignard Reaction is the addition of an organomagnesium
	halide (Grignard reagent) to a ketone or aldehyde, to form tertiary or
	secondary alcohol, respectively. The reaction with formaldehyde leads to
	primary alcohol.
	Grignard Reagents are also used in the following important reactions: The
	addition of an excess of a Grignard reagent to an ester or lactone gives tertiary
	alcohol in which two alkyl groups are the same, and the addition of a Grignard
	reagent to a nitrile produces an unsymmetrical ketone via a metalloimine
	intermediate. $RCOR_1 + R_2MgX RC(OH)R_1R_2$
Ans. 24	(d) carbohydrate
	Explanation: Honey is a high carbohydrate substance. It also contains
	proteins.
Ans. 25	(a) sp 3 d 2
	Explanation: The structure of all interhalogen compounds of the type XX'5 involves
	sp ³ d ² hybridization of the central halogen atom X and hence have octahedral (also
	called square pyramidal) geometry and with one position occupied by a lone pair.

	Section – B
Ans. 26	(a) 4
	Explanation: Two-dimension close-packed structures, where rows of
	identicalsphericalmolecules are stacked on top of each other, can be
	done in two ways, square and hexagonal. In a square close-packed
	structure, the second row is stacked just above the first row, and the
	spheres are aligned horizontally and vertically as the way mentioned
	above. If we observe a sphere in this arrangement, it is surrounded
	by four spheres that are in direct contact with it. Joining the centers
	of the four spheres also forms a square, thus giving the term square
	close-packed structure in two- dimension. Thus by definition of
	coordination number, a sphere in close-packed structure is 4.
Ans. 27	(c) Molality
	Explanation: Volume is dependent on temperature. Molality, mole fraction
	and weight percentage does not depend on temperature because they
	involve masses of solute and solvent.
Ans. 28	(a) carbohydrate
	Explanation: It is ald ohexose. An ald ohexose is a hexose with an
	aldehyde group on one end.it is naturally occurring in nature and is
	found in fruits.
Ans. 29	(b) Fluorine
	Explanation: Of all the halogens, fluorine is the most reactive and hence is
	also called super halogen. Fluorine is also the most electronegative (EN =
	4.0) element in the periodic table. This indicates that fluorine has a high
	tendency to gain electrons from other elements with lower
	electronegativities.
Ans. 30	(a) Na
	Explanation: $2CH_3Br + 2Na \rightarrow CH_3CH_3 + 2NaBr$
Ans. 31	(d) Helium
İ	Explanation: Noble gases can form compounds in which the gases are

	entrapped in the cavities of crystal lattices. Such compounds are called
	clathrates. Only Argon, Krypton, Xenon and Radon are known to form
	clathrates among the noble gases.
Ans. 32	(d) glucose
	Explanation: Glucose is the monomer of many of the larger
	carbohydrates, namely starch, cellulose. Hydrolysis of starch gives
	glucose.
Ans. 33	(d) Methane
	Explanation: CH ₃ MgBr reacts with CH ₃ OH and form CH ₄ .
	Grignard Reagent act as both base as well as a nucleophile.
	In the presence of alcohol, H ₂ O or other groups having
	acidic hydrogen Grignard reagent act as base and abstract
	acidic H.
Ans. 34	(a) High pressure
	Explanation: High pressure increases the boiling point of water so it
	reduces the cooking time.
Ans. 35	(d) NI3
	Explanation: The strongest lewis base is NI3 due to lower
	electronegativity of I. So the tendency of trihalides of N decreases from
	NI ₃ > NBr ₃ > NCl ₃ > NF ₃ due to increase in electronegativity from I to
	F.
Ans. 36	(a) 2, 2-Dimethylpropane
	Explanation: All the hydrogen atoms in 2, 2-dimethyl - propane are
	equivalent, hence it can form only one monochlorinated product.
Ans. 37	(b) 4
	Explanation: $d = \frac{zM}{a^3 \cdot N_A}$

	$z = \frac{d \cdot a^3 N_A}{M}$
	171
	$= \frac{2.7 \times 10^{3} kgm^{-3} \times (4.05 \times 10^{-10} m) \times 6.022 \times 10^{23} \text{ mol}^{-1}}{2.7 \times 10^{-2} \log m}$
	$ 2.7 \times 10^{-2} \text{ kg mol}^{-1} $ $ = 4.004 $
	= 4
Ans. 38	(d) Salicylaldehyde
	Explanation: Salicylaldehyde
Ans. 39	(a) 9.033×10^{23}
	Explanation: Number of atoms in 1 mole of compound = 6.022×10^{23}
	Number of atoms in 0.5 mole of compound = $0.5 \times 6.022 \times 10^{23} = 3.011 \times 10^{23}$
	10^{23}
	For a hexagonal close-packed structure,
	Number of octahedral voids = number of atoms in close packaging
	Therefore, the Number of octahedral voids = 3.011×10^{23}
	and Number of tetrahedral voids = $2 \times$ number of atoms in close
	packaging
	so, Number of tetrahedral voids = $2 \times 3.011 \times 10^{23} = 6.022 \times 10^{23}$
	Total number of voids = Tetrahedral void + octahedral void
	$= (6.022 + 3.011) \times 10^{23}$
	$=9.033\times10^{23}$
Ans. 40	(a) The number of moles of solute dissolved per litre of the solution
	Explanation: Molarity Moles of solute
	$\overline{}$ Volume of solution (L)
Ans. 41	(d) Phosphorus
	Explanation: Phosphorus can be involved in p - d bond $_{\overline{I}}$ ng $_{\pi}$ due to the
	presence of vacant d orbitals Carbon, Nitrogen, and Boron does not
	have d orbitals.
Ans. 42	(c) (iv) > (iii) > (i) > (ii)
	Explanation: $(iv) > (iii) > (i) > (ii)$
Ans. 43	(d) Oxygen
L	<u> </u>

	Explanation: Oxygen exists as a diatomic gas at room temperature while
	other elements (S, Se and Te) exist as octatomic solids. Due to small size 4
	and high electronegativity, oxygen atom forms $p\pi$ – $p\pi$ double bond with
	other oxygen atom to form $0 = 0$ molecule. The intermolecular forces of
	attraction between oxygen molecules are weak van der Waals forces and
	hence oxygen exists as a diatomic gas at room temperature.
Ans. 44	(c) All of these
	Explanation: Complete hydrolysis of RNA yields a pentose sugar,
	phosphoric acid and nitrogen containing heterocyclic compounds
	$(called bases). In RNA molecule, the sugar moiety is \beta-D-ribose.$
Ans. 45	(c) A is true but R is false.
	Explanation: A is true but R is false.
Ans. 46	(d) A is false but R is true.
	Explanation: Haloalkanes react with AgCN to form alkyl isocyanides as
	the main product while KCN forms alkyl cyanides as the chief product.
Ans. 47	(b) Both assertion and reason are wrong statements.
	Explanation: Glycine can be synthesized by the body and is a non-
	essential amino acid.
Ans. 48	(a) Both A and R are true and R is the correct explanation of A.
	Explanation: Both A and R are true and R is the correct explanation
	of A.
Ans. 49	(b) Both A and R are true but R is not the correct explanation of A.
	Explanation: The FCC has maximum packing efficiency of 74% which
	in the case of BCC is 68% and Simple cubic has 52.4%. FCC has
	coordination number 12.

	Section – C	
Ans. 50	(d) Molarity changes withtemperature	
	Explanation: Molarity depends upon Volume of solution which changes with	
	Temperature.	
Ans. 51	(c) Thymine	
	Explanation: RNA does not have the pyrimidine Thymine and has Uracil instead while DNA	
	has Thymine. In RNA, Adenine binds to Uracil with two hydrogen bonds while in DNA,	
	Adenine binds to Thymine by two hydrogen bonds.	
Ans. 52	(b) ethers	
1	Explanation: The Williamson ether synthesis is an organic reaction, forming an ether	
	from an organohalide and deprotonated alcohol (alkoxide). This reaction was	
	developed by Alexander Williamson in 1850. Typically it involves the reaction of an H ₂ O Na: X: R1: O: R2 Na Na R2-X: R2-X:	
	alkoxide ion with a primary alkyl halide via an S_N^2 reaction.	
Ans. 53	(b) $F > Cl > Br > I$	
	Explanation: $F > Cl > Br > I$	
Ans. 54	(b) F	
	Explanation: F	
Ans. 55	(c)	
	Explanation: (c)	