Physics

Board - CBSE

Class - 10th

Topic – Electricity

- 1. Explain the following:
 - (a) Why is the tungsten used almost exclusively for filament of electric lamps?
 - (b) Why are the conductors of electric heating devices, such as bread-toasters and electric irons, made of an alloy rather than a pure metal?
 - (c) Why is the series arrangement not used for domestic circuits?
 - (d) How does the resistance of a wire vary with its area of cross-section?
 - (e) Why are copper and aluminium wires usually employed for electric transmission?
- 2. The value of current I flowing in a given resistor for the corresponding values of potential difference V across the resistor are given below:

I (amperes)	1.5	1.0	2.0	3.0	4.0
V(volts)	1.6	3.4	6.7	10.2	13.2

Plot a graph between V and I and calculate the resistance of that resistor.

- 3. How can three resistors of resistance 2Ω , 3Ω and 6Ω be connected to give a total resistance of (a) 4Ω (b) 9Ω ?
- 4. What are the advantages of connecting electrical devices in parallel with the battery instead of connecting them in series?
- 5. (a) Define electrical energy with S.I. unit?
 - (b) A household uses the following electric appliance;
 - (i) The refrigerator of rated 400w for ten-hour each day.
 - (ii) Two electric fans of rating 80w each for twelve hours each day.
 - (iii) Six electric tubes of rating 18w each for 6hours each day.

Calculate the household's electricity bill for June if the cost per unit of electric energy is Rs. 3.00.

- 6. Two wires, A and B, are equal in length, have different cross-sectional areas and are made of the same metal.
 - (a) (i) Name the property which is the same for both the wires,
 - (ii) Name the property which is different for both the wires.
 - (b) If the resistance of wire A is four times the resistance of wire B, calculate
 - (i) the ratio of the cross-sectional areas of the wires and
 - (ii) The ratio of the radii of the wire.

Physics

- 7. A household uses the following electric appliances
 - (i) The refrigerator of rated 4 for ten hours each thy.
 - (ii) Two electric fans of rating 8 each for twelve hours each day.
 - (iii) Six electric tubes of rating 18 W each for 6 hours each day. Calculate the household's electricity bill for June if the cost per unit of electric energy is Rs. 3.00.
- 8. A wire of length L and resistance R is stretched so that its length is doubled. How will its (a) Resistance change (b) Resistively change?
- 9. Compare the power used in the 2 Ω resistor in each of the following circuits:
 - (i) A 6-volt battery in series with 1 Ω and 2 Ω resistors and,
 - (ii) A 4 V battery in parallel with 12Ω and Ω resistors.
- 10. Show how you would connect three resistors, each of resistance 6 Ω so that the combination has a resistance of (i) 9Ω (ii) 4Ω .
- 11. A copper wire has a diameter of 0.5 mm and resistivity of 1.6×10^{-8} m. what will be the length of this wire to make its resistance 10? How much does the resistance change if the diameter is doubled?
- 12. An electric lamp of $100~\Omega$, a toaster of $50~\Omega$ and a water filter of resistance $500~\Omega$ are connected parallel to a 220~V source. What is the resistance of an electric iron connected to the same source that takes as much current as all three appliances? What is the current through it?
- 13. When connected to the same source, will current flow more easily through a thick wire or a thin wire of the same material? Why?
- 14. On what factor does the resistance of a conductor depend?
- 15. Define 1 volt. Express it in terms of S.I. unit of work and charge calculate the amount of energy consumed in carrying a charge of 1 coulomb through a battery of 3 V.