CBSE Class 10 Maths Syllabus

Get a Free Demo at your home

Supercharge your learning with personalized analysis and study tips. 90% students find their session to be a game changer.

COURSE STRUCTURE CLASS -X

Knowing the CBSE Class 10 Maths syllabus is a prerequisite for students preparing for CBSE Class 10 Board exam. Else, they might miss out on certain topics and chapters which may be important from exam point of view. The score in Maths plays an important role in choosing your a career ahead. So if a candidate wishes to pursue Science in Class 11, he/she must have scored good marks in Maths, primarily. In order to score good marks in Maths, the student should be aware of CBSE 10 Maths syllabus.
Know the topics to be studied during the complete course to score well in the upcoming board examinations. Though Mathematics involve tricky questions, the subject is also scoring; hence it is essential to be aware of the topics asked during the board exams. So, look no further and go through CBSE Class 10 Maths Syllabus now.

Sections

COURSE STRUCTURE CLASS -X Stroke 396

Units Unit Name Marks
I NUMBER SYSTEMS 06
II ALGEBRA 20
III COORDINATE GEOMETRY 06
IV GEOMETRY 15
V TRIGONOMETRY 12
VI MENSURATION 10
VII STATISTICS & PROBABILTY 11
Total 80

UNIT I: NUMBER SYSTEMS

• 1. REAL NUMBER (15) Periods
• Euclid’s division lemma, Fundamental Theorem of Arithmetic - statements after reviewing work done earlier and after illustrating and motivating through examples, Proofs of
• irrationality of √2, √3 √5 Decimal representation of rational numbers in terms of terminating/non-terminating recurring decimals.

UNIT II: ALGEBRA

1. POLYNOMIALS (7) Periods
Zeros of a polynomial. Relationship between zeros and coefficients of quadratic polynomials. Statement and simple problems on division algorithm for polynomials with real coefficients.
• 2. PAIR OF LINEAR EQUATIONS IN TWO VARIABLES (15) Periods
Pair of linear equations in two variables and graphical method of their solution, consistency/inconsistency. Algebraic conditions for number of solutions. Solution of a pair of linear equations in two variables algebraically - by substitution, by elimination and by cross multiplication method. Simple situational problems. Simple problems on equations reducible to linear equations.
• 3. QUADRATIC EQUATIONS (15) Periods
Standard form of a quadratic equation ax 2 + bx + c = 0, (a ≠ 0). Solutions of quadratic equations (only real roots) by factorization, by completing the square and by using quadratic formula. Relationship between discriminant and nature of roots. Situational problems based on quadratic equations related to day to day activities to be incorporated.
• 4. ARITHMETIC PROGRESSIONS (8) Periods
Motivation for studying Arithmetic Progression Derivation of the n th term and sum of the first n terms of A.P. and their application in solving daily life problems.

UNIT III: COORDINATE GEOMETRY

• 1. LINES (In two-dimensions) (14) Periods
Review: Concepts of coordinate geometry, graphs of linear equations. Distance formula. Section formula (internal division). Area of a triangle.

UNIT IV: GEOMETRY

• 1. TRIANGLES (15) Periods
Definitions, examples, counter examples of similar triangles.
• 1. (Prove) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
• 2. (Motivate) If a line divides two sides of a triangle in the same ratio, the line is parallel to the third side.
• 3. (Motivate) If in two triangles, the corresponding angles are equal, their corresponding sides are proportional and the triangles are similar.
• 4. (Motivate) If the corresponding sides of two triangles are proportional, their corresponding angles are equal and the two triangles are similar.
• 5. (Motivate) If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar.
• 6. (Motivate) If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, the triangles on each side of the perpendicular are similar to the whole triangle and to each other.
• 7. (Prove) The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
• 8. (Prove) In a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.
• 9. (Prove) In a triangle, if the square on one side is equal to sum of the squares on the other two sides, the angles opposite to the first side is a right angle.

2. CIRCLES (8) Periods

Tangent to a circle at, point of contact
• 1. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
• 2. (Prove) The lengths of tangents drawn from an external point to a circle are equal.
• 3. CONSTRUCTIONS (8) Periods
• 1. Division of a line segment in a given ratio (internally).
• 2. Tangents to a circle from a point outside it.
• 3. Construction of a triangle similar to a given triangle

UNIT V: TRIGONOMETRY

• 1. INTRODUCTION TO TRIGONOMETRY (10) Periods
Trigonometric ratios of an acute angle of a right-angled triangle. Proof of their existence (well defined); motivate the ratios whichever are defined at 0 oand 90 o. Values (with proofs) of the trigonometric ratios of 30 0, 45 0 and 60 0. Relationships between the ratios.
• 2. TRIGONOMETRIC IDENTITIES (15) Periods
Proof and applications of the identity sin 2A + cos 2A = 1. Only simple identities to be given. Trigonometric ratios of complementary angles.
• 3. HEIGHTS AND DISTANCES: Angle of elevation, Angle of Depression. (8) Periods Simple problems on heights and distances. Problems should not involve more than two right triangles. Angles of elevation / depression should be only 30°, 45°, 60°.

UNIT VI: MENSURATION

• 1. AREAS RELATED TO CIRCLES (12) Periods
Motivate the area of a circle; area of sectors and segments of a circle. Problems based on areas and perimeter / circumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of 60°, 90° and 120° only. Plane figures involving triangles, simple quadrilaterals and circle should be taken.)
• 2. SURFACE AREAS AND VOLUMES (12) Periods
1. Surface areas and volumes of combinations of any two of the following: cubes, cuboids, spheres, hemispheres and right circular cylinders/cones. Frustum of a cone.
• 2. Problems involving converting one type of metallic solid into another and other mixed problems. (Problems with combination of not more than two different solids be taken).

UNIT VII: STATISTICS AND PROBABILITY

• 1. STATISTICS (18) Periods
Mean, median and mode of grouped data (bimodal situation to be avoided). Cumulative frequency graph.
• 2. PROBABILITY (10) Periods
Classical definition of probability. Simple problems on single events (not using set notation).

QUESTIONS PAPER DESIGN 2018–19

Mathematics (Code No. 041) Marks: 80

S. No Typology of Questions Very Short Answer (VSA) (1 Mark) Short Answer-I (SA) (2 Marks) Short Answer-II (SA) (3 Marks) Long Answer (LA) (4 Marks) Total Marks % Weightage (approx.)
1 Remembering- (Knowledge based- Simple recall questions, to know specific facts, terms, concepts, principles or theories; Identify, define, or recite, information) 2 2 2 2 20 25%
2 Understanding- (Comprehension- to be familiar with meaning and to understand conceptually, interpret, compare, contrast, explain, paraphrase, or interpret information) 2 1 1 4 23 29%
3 Application (Use abstract information in concrete situation, to apply knowledge to new situation; Use given content to interpret a situation, provide an example, or solve a problem) 2 2 1 3 19 24%
4 Higher Order Thinking Skills (Analysis & Synthesis- Classify, compare, contrast, or differentiate between different pieces of information; Organize and /or integrate unique pieces of information from variety of sources ) - 1 4 - 14 17%
5 Evaluation ( Judge, and/or justify the value or worth of a decision or outcome, or to predict outcomes based on values) - - - 1 4 5%
Total 6x1=6 6x2=12 10x3=30 8x4=32 80 100%
 INTERNAL ASSESSMENT 20 Marks • Periodical Test 10 Marks • Note Book Submission 05 Marks • Lab Practical (Lab activities to be done from the prescribed books) 05 Marks