

CBSE 11th TEEVRA EDUTECH PVT. LTD.

Sets Exercise- 1.2

"An Innovative Practice Methodology by IITians."

- 1. Which of the following are examples of the null set
 - (i) Set of odd natural numbers divisible by 2
 - (ii) Set of even prime numbers
 - (iii) {x:x is a natural number, x < 5 and x > 7}
 - (iv) {y: y is a point common to any two parallel lines}
- **Ans.** (i) A set of odd natural numbers divisible by 2 is a null set because no odd number is divisible by 2.
 - (ii) A set of even prime numbers is not a null set because 2 is an even prime number.
 - (iii) $\{x: x \text{ is a natural number, } x < 5 \text{ and } x > 7\}$ is a null set because a number cannot be simultaneously less than 5 and greater than 7.
 - (iv) {y: y is a point common to any two parallel lines} is a null set because parallel lines do not intersect. Hence, they have no common point.
- **2.** Which of the following sets are finite or infinite
 - (i) The set of months of a year
 - (ii) {1, 2, 3 ...}
 - (iii) {1, 2, 3 ... 99, 100}
 - (iv) The set of positive integers greater than 100
 - (v) The set of prime numbers less than 99
- **Ans.** (i) The set of months of a year is a finite set because it has 12 elements.
 - (ii) {1, 2, 3 ...} is an infinite set as it has infinite number of natural numbers.
 - (iii) {1, 2, 3 ...99, 100} is a finite set because the numbers from 1 to 100 are finite in number.
 - (iv) The set of positive integers greater than 100 is an infinite set because positive integers greater than 100 are infinite in number.
 - (v) The set of prime numbers less than 99 is a finite set because prime numbers less than 99 are finite in number.
- 3. State whether each of the following set is finite or infinite:
 - (i) The set of lines which are parallel to the x-axis
 - (ii) The set of letters in the English alphabet
 - (iii) The set of numbers which are multiple of 5
 - (iv) The set of animals living on the earth
 - (v) The set of circles passing through the origin (0, 0)

- **Ans.** (i) The set of lines which are parallel to the x-axis is an infinite set because line parallel to the x-axis are infinite in number.
 - (ii) The set of letters in the English alphabet is a finite set because it has 26 elements.
 - (iii) The set of numbers which are multiple of 5 is an infinite set because multiples of 5 are infinite in number.
 - (iv) The set of animals living on the earth is a finite set because the number of animals living on the earth is finite (although it is quite a big number).
 - (v) The set of circles passing through the origin (0, 0) is an infinite set because infinite number of circles can pass through the origin.
- **4.** In the following, state whether A = B or not:

(i)
$$A = \{a, b, c, d\}; B = \{d, c, b, a\}$$

(ii)
$$A = \{4, 8, 12, 16\}; B = \{8, 4, 16, 18\}$$

(iii)
$$A = \{2, 4, 6, 8, 10\}; B = \{x: x \text{ is positive even integer and } x \le 10\}$$

(iv)
$$A = \{x: x \text{ is a multiple of } 10\}; B = \{10, 15, 20, 25, 30 ...\}$$

Ans. (i)
$$A = \{a, b, c, d\}; B = \{d, c, b, a\}$$

The order in which the elements of a set are listed is not significant.

$$\therefore A = B$$

(ii)
$$A = \{4, 8, 12, 16\}; B = \{8, 4, 16, 18\}$$

It can be seen that $12 \in A$ but $12 \notin B$.

$$\therefore A \neq B$$

(iii)
$$A = \{2, 4, 6, 8, 10\}$$

 $B = \{x: x \text{ is a positive even integer and } x \le 10\}$

$$= \{2, 4, 6, 8, 10\}$$

$$A = B$$

(iv)
$$A = \{x: x \text{ is a multiple of } 10\}$$

$$B = \{10, 15, 20, 25, 30 ...\}$$

It can be seen that $15 \in B$ but $15 \notin A$.

$$\therefore A \neq B$$

5. Are the following pair of sets equal? Give reasons.

(i)
$$A = \{2, 3\}$$
; $B = \{x: x \text{ is solution of } x^2 + 5x + 6 = 0\}$

(ii)
$$A = \{x: x \text{ is a letter in the word FOLLOW}\}; B = \{y: y \text{ is a letter in the word WOLF}\}$$

Ans. (i)
$$A = \{2, 3\}$$
; $B = \{x : x \text{ is a solution of } x^2 + 5x + 6 = 0\}$

The equation $x^2 + 5x + 6 = 0$ can be solved as:

$$X(x+3) + 2(x+3) = 0$$

$$(x+2)(x+3) = 0$$

$$x = -2 \text{ or } x = -3$$

$$\therefore$$
 A = {2, 3}; B = {-2, -3}

$$\therefore A \neq B$$

(ii)
$$A = \{x: x \text{ is a letter in the word FOLLOW}\} = \{F, O, L, W\}$$

$$B = \{y: y \text{ is a letter in the word WOLF}\} = \{W, O, L, F\}$$

The order in which the elements of a set are listed is not significant.

$$\therefore A = B$$

6. From the sets given below, select equal sets:

$$A = \{2, 4, 8, 12\}, B = \{1, 2, 3, 4\}, C = \{4, 8, 12, 14\}, D = \{3, 1, 4, 2\}$$

$$E = \{-1, 1\}, F = \{0, a\}, G = \{1, -1\}, H = \{0, 1\}$$

Ans. A = $\{2, 4, 8, 12\}$; B = $\{1, 2, 3, 4\}$; C = $\{4, 8, 12, 14\}$

$$D = \{3, 1, 4, 2\}; E = \{-1, 1\}; F = \{0, a\}$$

$$G = \{1, -1\}; A = \{0, 1\}$$

It can be seen that

 $8 \in A, 8 \notin B, 8 \notin D, 8 \notin E, 8 \notin F, 8 \notin G, 8 \notin H$

$$\Rightarrow$$
 A \neq B, A \neq D, A \neq E, A \neq F, A \neq G, A \neq H

Also, $2 \in A$, $2 \notin C$

$$\therefore A \neq C$$

 $3 \in B$, $3 \notin C$, $3 \notin E$, $3 \notin F$, $3 \notin G$, $3 \notin H$

$$\therefore$$
 B \neq C, B \neq E, B \neq F, B \neq G, B \neq H

 $12 \in C$, $12 \notin D$, $12 \notin E$, $12 \notin F$, $12 \notin G$, $12 \notin H$

$$\therefore$$
 C \neq D, C \neq E, C \neq F, C \neq G, C \neq H

 $4 \in D$, $4 \notin E$, $4 \notin F$, $4 \notin G$, $4 \notin H$

$$\therefore$$
 D \neq E, D \neq F, D \neq G, D \neq H

Similarly, $E \neq F$, $E \neq G$, $E \neq H$

$$F \neq G, F \neq H, G \neq H$$

The order in which the elements of a set are listed is not significant.

$$\therefore$$
 B = D and E = G

Hence, among the given sets, B = D and E = G.