Topic - Area Theorems

1. Parallelograms on the same base and between the same parallels are equal in area.
2. The area of a triangle is half that of a Parallelogram on the same base and between the same parallels.
3. Prove that a median divides a triangle into two triangles of equal area.

4. In a $\triangle \mathrm{XYZ}, \mathrm{XA}$ is median on side YZ . Find the ratio of $\operatorname{ar}(\triangle \mathrm{XYA}): \operatorname{ar}(\triangle \mathrm{XZA})$.
5. $A B C D$ is a parallelogram and Q is any point on side $A D$. If $(\triangle Q B C)=$ $10 \mathrm{~cm}^{2}$, find $\operatorname{ar}(\triangle \mathrm{QAB})+\operatorname{ar}(\triangle Q D C)$.

6. WXYZ is a parallelogram with $\mathrm{XP} \perp \mathrm{WZ}$ and $\mathrm{ZQ} \perp \mathrm{WX}, \mathrm{XP}=8 \mathrm{~cm}$ And $Z Q=2 \mathrm{~cm}$, find $Y X$.

7. In a triangle $A B C, E$ is the mid-point of median $A D$. Show that $\operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$.

8. In fig, PQRS is parallelogram with $\mathrm{PQ}=8 \mathrm{~cm}$ and $\operatorname{ar}(\triangle \mathrm{PXQ})=32 \mathrm{~cm}^{2}$ find the Altitude of parallelogram $P Q R S$ and hence its area.
9. Show that the diagonals of a parallelogram divide it into four triangles of equal area

10. Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that $\operatorname{ar}(\triangle A P B) x$ $\operatorname{ar}(\Delta \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{APD}) \mathrm{X} \operatorname{ar}(\Delta \mathrm{BPC})$.

Answer

1. $1: 1$
2. $10 \mathrm{~cm}^{2}$
3. $\mathrm{YX}=2 \mathrm{~cm}$
4. $64 \mathrm{~cm}^{2}$
