Class - IX **Topic – Area Theorems** 1. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that area of \triangle APB = area of \triangle BQC. Solution: Given a parallelogram ABCD, and P and Q are points lying on the sides DC and AD respectively as shown in the adjoining figure. As \triangle APB and || gm ABCD are on the same base and between the same parallels AB and DC. area of $$\triangle APB = \frac{1}{2}$$ area of || gm ABCD ... (i) Also, as ΔBQC and $||\mbox{ gm}$ ABCD are on the same BC and between the and BC, area of $$\triangle BQC = \frac{1}{2}$$ area of || gm ABCD ... (ii) From (i) and (ii), we get Area of $\triangle APB = \text{area of } \triangle BQC$. - 2. In the adjoining figure, ABCD is a rectangle with sides AB = 8 cm and AD = 5 cm. Compute - (i) Area of parallelogram ABEF - (ii) Area of ΔEFG. Solution: - (i) Area of || gm ABEF= area of rectangle ABCD (on the same base AB and between the same parallels AB and DE) = (8×5) cm² = 40 cm². (ii) Area of $$\triangle EFG = \frac{1}{2} \times \text{ area of } || \text{ gm ABEF}$$ (On the same base FE and between the same parallels FE and AG) $\,$ $$= \left(\frac{1}{2} \times 40\right) \text{cm}^2 = 20 \text{ cm}^2$$ 3. ABCD is a trapezium with AB || DC, and diagonals AC and BD meet at O. Prove that area of Δ DAO = area of Δ OBC. #### Solution: | Statements | Reasons | |--|--| | 1. AB DC | 1. Given. | | 2. Area of $\triangle ABD$ = area of $\triangle ABC$ | Δs on the same base AB and between
the same parallels AB and CD are
equal in area. | | 3. Area of ΔDAO + area of ΔOAB = area of ΔOBC + area of ΔOAB | 3. Addition area axiom. | | 4. Area of ΔDAO = area of ΔOBC Q.E.D. | Subtracting same area from both sides. | 4. The diagonals of a parallelogram ABCD intersect at O. A straight line through O meets AB at P and the opposite side CD at Q. Prove that area of quad. APADD a of #gm ABCD. ### Solution: | Statements | Reasons | |---|---| | 1. Area of $\triangle ACD = \frac{1}{2}$ area of \parallel gm ABCD | Diagonal divides a ∥gm into two Δs of equal area. | | In ΔOAP and ΔOCQ | | | 2. ∠OAP = ∠OCQ | 2. Alt. ∠s. | | 3. ∠AOP = ∠COQ | 3. Vert. opp. ∠s. | | 4. AO = OC | 4. Diagonals bisect each other. | | 5. ΔOAP ≡ ΔOCQ | 5. ASA rule of congruency. | | 6. Area of ΔOAP = area of ΔOCQ | 6. Congruence area axiom. | | Area of ΔOAP + area of quad. AOQD area of ΔOCQ + area of quad. AOQD | 7. Adding same area on both sides. | | 8. Area of quad. APQD = area of Δ ACD | 8. Addition area axiom. | | 9. Area of quad. APQD = ¹/₂ area of gm ABCD Q.E.D. | 9. From 8 and 1. | 5. In quadrilateral ABCD, M is mid-point of the diagonal AC. Prove that area ABMD = area of quad. DMBC. of quad. ### Solution: | Statements | Reasons | |--|--| | 1. BM is median of ΔBCA | 1. M is mid-point of AC (given). | | 2. Area of ΔABM = area of ΔMBC | 2. Median divides a Δ into two Δ s of equal area. | | 3. DM is median of ΔDAC | 3. M is mid-point of AC (given). | | 4. Area of ΔDAM = area of ΔDMC | Median divides a triangle into two
Δs of equal area. | | 5. Area of $\triangle ABM$ + area of $\triangle DAM$ = area of $\triangle MBC$ + area of $\triangle DMC$ | 5. Adding 2 and 4. | | 6. Area of quad. ABMD = area of quad. DMBC Q.E.D. | 6. Addition area axiom. | 6. In the adjoining figure, ABCDE is any pentagon. BP drawn parallel to AC meets produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove ABCDE = area of Δ APQ. DC that area of ### Solution: Δ PCA and Δ BCA are on the same base CA and between same parallels BP || AC. \therefore Area of ΔBCA = area of ΔPCA ... (i) Δ EAD and Δ QAD are on the same base AD and between same parallels EQ || AD, ∴ Area of $\triangle EAD$ = area of $\triangle QAD$... (ii) Also, area of $\triangle ACD$ = area of $\triangle ACD$... (iii) On adding (i), (iii) and (ii), we get area of $\triangle BCA + area$ of $\triangle ACD + area$ of $\triangle EAD$ = area of Δ PCA + area of Δ ACD + area of Δ QAD \Rightarrow Area of ABCDE = area of \triangle APQ. 7. The diagonals AC and BD of a quadrilateral ABCD intersect at 0 in such a way that area of Δ OAD = area of Δ OBC. Prove that ABCD is a trapezium. #### Solution: Draw DM \perp AB and CN \perp AB. As DM and CN are both perpendiculars to AB, therefore, DM || CN. Given area of \triangle OAD = area of \triangle OBC \Rightarrow Area of \triangle OAD + area of \triangle OAB = area of \triangle OBC + area of \triangle OAB (adding same area on both sides) $$\Rightarrow$$ Area of \triangle ABD = area of \triangle ABC $$\Rightarrow \frac{1}{2}AB \times DM = \frac{1}{2}AB \times CN$$ $$\Rightarrow$$ DM = CN. Thus DM || CN and DM = CN, therefore, DMNC is a parallelogram $$\Rightarrow$$ D C || MN i.e. DC || AB. Hence, ABCD is a trapezium. 8. ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and Prove that: area of Δ ADX = area of Δ ACY. BC at Y. #### Solution: Join CX. As triangles ADX and ACX have same base AX and are between the same Parallels (AB || DC given, so, AX || DC), ∴ Area of $\triangle ADX$ = area of $\triangle ACX$... (i) As triangles ACY and ACX have same base AC and are between the same parallels (XY || AC given), $$\therefore$$ Area of ΔACY = area of ΔACX ... (ii) From (i) and (ii), we get area of $\triangle ADX = \text{area of } \triangle ACY$. ### Solution: As \triangle ABE and || gm EBCY have the same base BE and are between the same parallels BE || CA (given), ∴ Area of $$\triangle ABE = \frac{1}{2} \times Area$$ of || gm EBCY ... (i) As \triangle ACF and || gm XBCF have the same base CF and are between the same parallels FC || AB (given), ∴ Area of $$\triangle ACF = \frac{1}{2} \times Area$$ of || gm XBCF ... (ii) But || gm EBCY and || gm XBCF have the same base BC and are between the same parallels (XY || BC given), $$\Rightarrow \frac{1}{2} \times \text{Area of } || \text{ gm EBCY } = \frac{1}{2} \times \text{Area of } || \text{ gm XBCF}$$ $$\Rightarrow$$ Area of ΔABE = area of ΔACF # 10. In the adjoining figure, PQRS and PXYZ are two parallelograms of equal SX is parallel to YR. Join XR, SY. Given area of || gm PQSR = area of || gm PXYZ. Subtract area of || gm PSOX from both sides. $$\Rightarrow$$ Area of Δ $XOR = area of \Delta SYO$ (because diagonal divides a || gm into two equal areas) Adding area of Δ OYR to both sides, we get area of Δ XYR = area of Δ SYR. Also the Δs XYR and SYR have the same base YR, therefore, these lie between the same Parallels \Rightarrow SX is parallel to YR. 11. In the adjoining figure, ABCD, DCFE and ABFE are parallelograms. Show that area of \triangle ADE = area of \triangle BCF. Solution: As ABCD is a parallelogram, AD= B C (opp. sides of a || gm) Similarly, DE = CF and AE = BF. In \triangle ADE and \triangle BCF, $$AD = B C$$, $DE = CF$ and $AE = BF$ - $\cong \Delta BCF$ (by SSS rule of congruency) ∴ ∆ADE - \therefore Area of \triangle ADE = area of \triangle BCF (congruent figures have equal areas) ### Solution: Let BC and AD intersect at O. Draw AM \perp BC and DN \perp BC. Given area of \triangle ABC = area of \triangle DBC $$\Rightarrow \frac{1}{2} BC \times AM = \frac{1}{2} BC \times DN$$ $$\Rightarrow$$ AM = DN. In \triangle AMO and \triangle DNO, $$\angle$$ AOM = \angle DON (vert. opp. \angle s) $$\angle$$ AMO = \angle DNO (each angle = 90°) AM = DN (proved above) $$\therefore \Delta$$ AMO $\cong \Delta$ DNO (AAS rule of congruency) $$\therefore$$ A 0 = D0 (c.p.c.t.) Hence, BC bisects AD. 13. In the adjoining figure, ABCD is a parallelogram and BC is produced to a point Q such that CQ = AD. If AQ intersects DC at P, show that area of Δ BPC = area of Δ DPQ. #### Solution: Join AC. As triangles BPC and APC have same base PC and are between the same parallels (AB || DC i.e. AB || PC), ∴ Area of \triangle BPC = area of \triangle APC ... (i) In quad. ADQC, AD || CQ (∵ AD || BC, opp. sides of || gm ABCD) AD= CQ (given) : ADQC is a parallelogram, so its diagonals AQ and DC bisect each other i.e. DP = PC and AP = PQ. In \triangle APC and \triangle QPD, PC = D P AP = PQ $\angle APC = \angle QPD$ (vert. opp. $\angle s$) $\Delta APC \cong \Delta QPD$ ∴ Area of $\triangle APC$ = area of $\triangle DPQ$... (ii) From (i) and (ii), we get Area of $\triangle BPC = \text{area of } \triangle DPQ$. # 14. ABC is a triangle whose area is 50 cm². E and F are mid-points of the sides AB and AC respectively. Prove that EBCF is a trapezium. Also find its area. #### Solution: Since E and F are mid-points of the sides AB and AC respectively, $EF \parallel BC$ and EF = 1 2 BC. As EF | BC, EBCF is a trapezium. From A, draw AM \perp BC. Let AM meet EF at N. Since EF | BC, \angle ENA = \angle BMN. But \angle BMN = 90° (\because AM \bot BC) So \angle ENA = 90° i.e. AN \bot EF. Also, as E is mid-point of AB and EN | BM, N is mid-point of AM. Now, area of $$\triangle$$ AEF $=\frac{1}{2}$ EF \times AN $=\frac{1}{2}\left(\frac{1}{2}$ BC $\times \frac{1}{2}$ AM $\right) = \frac{1}{4}\left(\frac{1}{2}$ BC \times AM $\right) = \frac{1}{4}$ (area of \triangle ABC) $$= \frac{1}{4}(50 \text{cm}^2) = 12.5 \text{ cm}^2.$$ \therefore Area of trapezium EBCF = area of \triangle ABC - area of \triangle AEF $$= 50 \text{ cm}^2 - 12.5 \text{ cm}^2 = 37.5 \text{ cm}^2.$$ 15. Prove that the area of the quadrilateral formed by joining the mid-points of the adjacent sides of a quadrilateral is half the area of the given quadrilateral. #### Solution: A quadrilateral ABCD, and PQRS is the quadrilateral formed by joining mid-points of the sides AB, BC, CD and DA respectively. To prove: Area of quad. PQRS $=\frac{1}{2}$ area of quad. ABCD. Construction: Join AC and AR. Proof: | Statements | Reasons | |---|--| | 1. Area of $\triangle ARD = \frac{1}{2}$ area of $\triangle ACD$ | Median divides a triangle into two
triangles of equal area. | | 2. Area of \triangle SRD = $\frac{1}{2}$ area of \triangle ARD | 2. Same as in 1. | | 3. Area of \triangle SRD = $\frac{1}{4}$ area of \triangle ACD | 3. From 1 and 2. | | 4. Area of $\triangle PBQ = \frac{1}{4}$ area of $\triangle ABC$ | 4. As in 3. | | 5. Area of \triangle SRD + area of \triangle PBQ
= $\frac{1}{4}$ (area of \triangle ACD + area of \triangle ABC) | 5. Adding 3 and 4. | | 6. Area of \triangle SRD + area of \triangle PBQ $= \frac{1}{4} \text{ area of quad. ABCD}$ | 6. Addition area axiom. | | 7. Area of \triangle APS + area of \triangle QCR = $\frac{1}{4}$ area of quad. ABCD | 7. Same as in 6. | | 8. Area of \triangle APS + area of \triangle PBQ + area of \triangle QCR + area of \triangle SRD = $\frac{1}{2}$ area of quad. ABCD | 8. Adding 6 and 7. | | Area of ΔAPS + area of ΔPBQ + area of ΔQCR + area of ΔSRD + area of quad. PQRS = area of quad. ABCD | 9. Addition area axiom. | | 10. Area of quad. PQRS = $\frac{1}{2} \text{ area of quad. ABCD}$ | 10. Subtracting 8 from 9. | | Q.E.D. | | 16. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that area of \triangle APB = area of \triangle BQC. ### Solution: Given a parallelogram ABCD, and P and Q are points lying on the sides DC and AD respectively as shown in the adjoining figure. As \triangle APB and || gm ABCD are on the same base and between the same parallels AB and DC. area of $$\triangle APB = \frac{1}{2}$$ area of || gm ABCD ... (i) Also, as ΔBQC and || gm ABCD are on the same BC and between the and BC, area of $$\triangle BQC = \frac{1}{2}$$ area of || gm ABCD ... (ii) From (i) and (ii), we get Area of $\triangle APB$ = area of $\triangle BQC$. - (iii) Area of parallelogram ABEF - (iv) Area of ΔEFG. Solution: (iii) Area of || gm ABEF= area of rectangle ABCD (on the same base AB and between the same parallels AB and DE) $$= (8 \times 5) \text{ cm}^2 = 40 \text{ cm}^2.$$ (iv)Area of $$\triangle EFG = \frac{1}{2} \times \text{ area of } || \text{ gm ABEF}$$ (On the same base FE and between the same parallels FE and AG) $$= \left(\frac{1}{2} \times 40\right) \text{cm}^2 = 20 \text{ cm}^2$$ 18. ABCD is a trapezium with AB || DC, and diagonals AC and BD meet at O. Prove that area of Δ DAO = area of Δ OBC. ### Solution: | Statements | Reasons | |--|--| | 1. AB DC | 1. Given. | | 2. Area of $\triangle ABD$ = area of $\triangle ABC$ | Δs on the same base AB and between
the same parallels AB and CD are
equal in area. | | 3. Area of ΔDAO + area of ΔOAB = area of ΔOBC + area of ΔOAB | 3. Addition area axiom. | | 4. Area of ΔDAO = area of ΔOBC
Q.E.D. | Subtracting same area from both sides. | 19. The diagonals of a parallelogram ABCD intersect at O. A straight line through O meets AB at P and the opposite side CD at Q. Prove that area of quad. APAPA of #| gm ABCD. #### Solution: 20. | Statements | Reasons | |--|---| | 1. Area of $\triangle ACD = \frac{1}{2}$ area of \parallel gm ABCD | Diagonal divides a ∥gm into two Δs of equal area. | | In ΔOAP and ΔOCQ | | | 2. ∠OAP = ∠OCQ | 2. Alt. ∠s. | | 3. ∠AOP = ∠COQ | 3. Vert. opp. ∠s. | | 4. AO = OC | 4. Diagonals bisect each other. | | 5. ΔOAP ≅ ΔOCQ | 5. ASA rule of congruency. | | 6. Area of ΔOAP = area of ΔOCQ | 6. Congruence area axiom. | | 7. Area of ΔOAP + area of quad. AOQD = area of ΔOCQ + area of quad. AOQD | 7. Adding same area on both sides. | | 8. Area of quad. APQD = area of ΔACD | 8. Addition area axiom. | | 9. Area of quad. APQD | 9. From 8 and 1. | | = ½ area of ∥ gm ABCD | | | Q.E.D. | | D Q C of quad. ABMD = area of quad. DMBC. Head Office: 106-107-108 Lake Homes Shopping Complex, Chandivali IRB Road, Mumbai 400076 T.: 022 4120 3067 | E.: info@speedlabs.in #### Solution: | Statements | Reasons | |--|--| | 1. BM is median of ΔBCA | 1. M is mid-point of AC (given). | | 2. Area of \triangle ABM = area of \triangle MBC | 2. Median divides a Δ into two Δ s of equal area. | | 3. DM is median of ΔDAC | 3. M is mid-point of AC (given). | | 4. Area of ΔDAM = area of ΔDMC | Median divides a triangle into two
Δs of equal area. | | 5. Area of $\triangle ABM$ + area of $\triangle DAM$ = area of $\triangle MBC$ + area of $\triangle DMC$ | 5. Adding 2 and 4. | | 6. Area of quad. ABMD = area of quad. DMBC Q.E.D. | 6. Addition area axiom. | 21. In the adjoining figure, ABCDE is any pentagon. BP drawn parallel to AC meets produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove ABCDE = area of Δ APQ. DC that area of #### Solution: Δ PCA and Δ BCA are on the same base CA and between same parallels BP || AC. : Area of $\triangle BCA$ = area of $\triangle PCA$... (i) Δ EAD and Δ QAD are on the same base AD and between same parallels EQ || AD, ∴ Area of Δ EAD = area of Δ QAD ... (ii) Also, area of $\triangle ACD$ = area of $\triangle ACD$... (iii) On adding (i), (iii) and (ii), we get area of $\triangle BCA$ + area of $\triangle ACD$ + area of $\triangle EAD$ - = area of Δ PCA + area of Δ ACD + area of Δ QAD - \Rightarrow Area of ABCDE = area of \triangle APQ. - 22. The diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that area of Δ OAD = area of Δ OBC. Prove that ABCD is a trapezium. BC at Y. #### Solution: Draw DM \perp AB and CN \perp AB. As DM and CN are both perpendiculars to AB, therefore, DM || CN. Given area of \triangle OAD = area of \triangle OBC \Rightarrow Area of \triangle OAD + area of \triangle OAB = area of \triangle OBC + area of \triangle OAB (adding same area on both sides) \Rightarrow Area of \triangle ABD = area of \triangle ABC $$\Rightarrow \frac{1}{2}AB \times DM = \frac{1}{2}AB \times CN$$ $$\Rightarrow$$ DM = CN. Thus DM || CN and DM = CN, therefore, DMNC is a parallelogram \Rightarrow D C || MN i.e. DC || AB. Hence, ABCD is a trapezium. 23. ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and Prove that: area of Δ ADX = area of Δ ACY. ### Solution: Join CX. As triangles ADX and ACX have same base AX and are between the same Parallels (AB | DC given, so, AX | DC), ∴ Area of $\triangle ADX$ = area of $\triangle ACX$... (i) As triangles ACY and ACX have same base AC and are between the same parallels (XY || AC given), ∴ Area of $\triangle ACY$ = area of $\triangle ACX$... (ii) From (i) and (ii), we get area of $\triangle ADX = \text{area of } \triangle ACY$. 24. XY is a line parallel to side BC of a triangle ABC. If BE || CA and FC || AB and F respectively, show that area of \triangle ABE = area of \triangle ACF. ### Solution: As \triangle ABE and || gm EBCY have the same base BE and are between the same parallels BE || CA (given), ∴ Area of $$\triangle ABE = \frac{1}{2} \times Area$$ of || gm EBCY ... (i) As ΔACF and || gm XBCF have the same base CF and are between the same parallels FC || AB (given), ∴ Area of $$\triangle ACF = \frac{1}{2} \times Area$$ of || gm XBCF ... (ii) But || gm EBCY and || gm XBCF have the same base BC and are between the same parallels (XY || BC given), $$\Rightarrow \frac{1}{2} \times \text{Area of } || \text{ gm EBCY } = \frac{1}{2} \times \text{Area of } || \text{ gm XBCF}$$ $$\Rightarrow$$ Area of \triangle ABE = area of \triangle ACF # 25. In the adjoining figure, PQRS and PXYZ are two parallelograms of equal SX is parallel to YR. #### Solution: Join XR, SY. Given area of || gm PQSR = area of || gm PXYZ. Subtract area of || gm PSOX from both sides. \Rightarrow Area of Δ $XOR = area of \Delta SYO$ (because diagonal divides a || gm into two equal areas) Adding area of Δ OYR to both sides, we get area of Δ XYR = area of Δ SYR. Also the Δs XYR and SYR have the same base YR, therefore, these lie between the same Parallels \Rightarrow SX is parallel to YR. 26. In the adjoining figure, ABCD, DCFE and ABFE are parallelograms. Show that area of Δ ADE = area of Δ BCF. Head Office: 106-107-108 Lake Homes Shopping Complex, Chandivali IRB Road, Mumbai 400076 T.: 022 4120 3067 | E.: info@speedlabs.in ### Solution: As ABCD is a parallelogram, AD= B C (opp. sides of a || gm) Similarly, DE = CF and AE = BF. In \triangle ADE and \triangle BCF, $$AD = B C$$, $DE = CF$ and $AE = BF$ - ∴ \triangle ADE \cong \triangle BCF (by SSS rule of congruency) - \therefore Area of \triangle ADE = area of \triangle BCF (congruent figures have equal areas) - 27. Triangles ABC and DBC are on the same base BC with A, D on opposite sides of BC. If area of \triangle ABC = area of \triangle DBC, prove that BC bisects AD. Let BC and AD intersect at O. Draw AM \perp BC and DN \perp BC. Given area of \triangle ABC = area of \triangle DBC $$\Rightarrow \frac{1}{2} BC \times AM = \frac{1}{2} BC \times DN$$ $$\Rightarrow$$ AM = DN. In \triangle AMO and \triangle DNO, $$\angle$$ AOM = \angle DON (vert. opp. \angle s) $$\angle$$ AMO = \angle DNO (each angle = 90°) AM = DN (proved above) $$\therefore \Delta$$ AMO $\cong \Delta$ DNO (AAS rule of congruency) $$\therefore$$ A 0 = D0 (c.p.c.t.) Hence, BC bisects AD. 28. In the adjoining figure, ABCD is a parallelogram and BC is produced to a point Q such that CQ = AD. If AQ intersects DC at P, show that area of $\Delta BPC = \text{area of } \Delta DPQ$. ### Solution: Join AC. A s triangles BPC and APC have same base PC and are between the same parallels (AB || DC i.e. AB || PC), ∴ Area of \triangle BPC = area of \triangle APC ... (i) In quad. ADQC, AD || CQ (∵ AD || BC, opp. sides of || gm ABCD) AD=CQ (given) : ADQC is a parallelogram, so its diagonals AQ and DC bisect each other i.e. DP = PC and AP = PQ. In \triangle APC and \triangle QPD, PC = D P $$AP = PQ$$ $$\angle APC = \angle QPD$$ (vert. opp. $\angle s$) $\Delta APC \cong \Delta QPD$ ∴ Area of $\triangle APC$ = area of $\triangle DPQ$... (ii) From (i) and (ii), we get Area of $\triangle BPC$ = area of $\triangle DPQ$. 29. ABC is a triangle whose area is 50 cm². E and F are mid-points of the sides AB and AC respectively. Prove that EBCF is a trapezium. Also find its area. ### Solution: Since E and F are mid-points of the sides AB and AC respectively, $$E F \parallel BC$$ and $EF = 1$ 2 BC. As EF | BC, EBCF is a trapezium. From A, draw AM \perp BC. Let AM meet EF at N. Since EF | BC, \angle ENA = \angle BMN. But $$\angle$$ BMN = 90° (::AM \bot BC) So \angle ENA = 90° i.e. AN \bot EF. Also, as E is mid-point of AB and EN | BM, N is mid-point of AM. Now, area of $$\triangle$$ AEF $=\frac{1}{2}$ EF \times AN $=\frac{1}{2}\left(\frac{1}{2}$ BC $\times \frac{1}{2}$ AM $\right) = \frac{1}{4}\left(\frac{1}{2}$ BC \times AM $\right) = \frac{1}{4}$ (area of \triangle ABC) $$= \frac{1}{4} (50 \text{cm}^2) = 12.5 \text{ cm}^2.$$ \therefore Area of trapezium EBCF = area of \triangle ABC - area of \triangle AEF $$= 50 \text{ cm}^2 - 12.5 \text{ cm}^2 = 37.5 \text{ cm}^2.$$ 30. Prove that the area of the quadrilateral formed by joining the mid-points of the adjacent sides of a quadrilateral is half the area of the given quadrilateral. ### **Solution:** A quadrilateral ABCD, and PQRS is the quadrilateral formed by joining mid-points of the sides AB, BC, CD and DA respectively. To prove: Area of quad. PQRS $=\frac{1}{2}$ area of quad. ABCD. Construction: Join AC and AR. ### Proof: | Statements | Reasons | |---|--| | 1. Area of $\triangle ARD = \frac{1}{2}$ area of $\triangle ACD$ | Median divides a triangle into two
triangles of equal area. | | 2. Area of \triangle SRD = $\frac{1}{2}$ area of \triangle ARD | 2. Same as in 1. | | 3. Area of \triangle SRD = $\frac{1}{4}$ area of \triangle ACD | 3. From 1 and 2. | | 4. Area of $\triangle PBQ = \frac{1}{4}$ area of $\triangle ABC$ | 4. As in 3. | | 5. Area of ΔSRD + area of ΔPBQ | 5. Adding 3 and 4. | | = $\frac{1}{4}$ (area of \triangle ACD + area of \triangle ABC) | | | 6. Area of ΔSRD + area of ΔPBQ | 6. Addition area axiom. | | $=\frac{1}{4}$ area of quad. ABCD | | | 7. Area of \triangle APS + area of \triangle QCR $= \frac{1}{4} \text{ area of quad. ABCD}$ | 7. Same as in 6. | | 8. Area of \triangle APS + area of \triangle PBQ + area of \triangle QCR + area of \triangle SRD = $\frac{1}{2}$ area of quad. ABCD | 8. Adding 6 and 7. | | Area of ΔAPS + area of ΔPBQ + area of ΔQCR + area of ΔSRD + area of quad. PQRS = area of quad. ABCD | 9. Addition area axiom. | | 10. Area of quad. PQRS = $\frac{1}{2} \text{ area of quad. ABCD}$ | 10. Subtracting 8 from 9. | | Q.E.D. | |