Class - IX

Topic - Area Theorems

1. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that area of $\triangle A P B=$ area of $\triangle B Q C$.

Solution:

Given a parallelogram ABCD, and P and Q are points lying on the sides $D C$ and $A D$ respectively as shown in the adjoining figure. As $\triangle \mathrm{APB}$ and \| gm ABCD are on the same base and between the same parallels

AB and DC ,
area of $\triangle \mathrm{APB}=\frac{1}{2}$ area of $\| \mathrm{gm} \mathrm{ABCD}$
Also, as $\triangle B Q C$ and $\| g m ~ A B C D$ are on the same $B C$ and between the
 and $B C$,
area of $\triangle B Q C=\frac{1}{2}$ area of $\| \mathrm{gm} \mathrm{ABCD}$
From (i) and (ii), we get
Area of $\triangle A P B=$ area of $\triangle B Q C$.
2. In the adjoining figure, ABCD is a rectangle with sides $\mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{AD}=5 \mathrm{~cm}$. Compute
(i) Area of parallelogram ABEF
(ii) Area of $\triangle E F G$.

Solution:
(i) Area of \| gm ABEF= area of rectangle ABCD (on the same base AB

and between the same parallels AB and DE)
$=(8 \times 5) \mathrm{cm}^{2}=40 \mathrm{~cm}^{2}$.
(ii) Area of $\triangle E F G=\frac{1}{2} \times$ area of $\|$ gm ABEF
(On the same base FE and between the same parallels FE and AG)

$$
=\left(\frac{1}{2} \times 40\right) \mathrm{cm}^{2}=20 \mathrm{~cm}^{2}
$$

MATHEMATICS

3. ABCD is a trapezium with $\mathrm{AB} \| \mathrm{DC}$, and diagonals AC and BD meet at 0 . Prove that area of $\triangle \mathrm{DAO}=$ area of Δ OBC.

Solution:

Statements	Reasons	
1. $\mathrm{AB} \\| \mathrm{DC}$	1. Given.	
2. Area of $\triangle \mathrm{ABD}=$ area of $\triangle \mathrm{ABC}$	2. Δ s on the same base AB and between the same parallels AB and CD are equal in area.	
3. Area of $\triangle \mathrm{DAO}+$ area of $\triangle \mathrm{OAB}$ $=$ area of $\triangle \mathrm{OBC}+$ area of $\triangle \mathrm{OAB}$	3. Addition area axiom.	
4. Area of $\triangle \mathrm{DAO}=$ area of $\triangle \mathrm{OBC}$ Q.E.D.	4. Subtracting same area from both sides.	

4. The diagonals of a parallelogram ABCD intersect at 0 . A straight line through 0 meets AB at P and the opposite side $C D$ at Q. Prove that area of quad. APABa of $\frac{1}{2}$ gm ABCD. Solution:

Statements	Reasons		
1. Area of $\triangle \mathrm{ACD}=\frac{1}{2}$ area of $\\| \mathrm{gm} \mathrm{ABCD}$	1. Diagonal divides a $\\| \mathrm{gm}$ into two $\Delta \mathrm{s}$ of equal area.		
In $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OCQ}$			
2. $\angle \mathrm{OAP}=\angle \mathrm{OCQ}$	2. Alt. $\angle \mathrm{s}$.		
3. $\angle \mathrm{AOP}=\angle \mathrm{COQ}$	3. Vert. opp. $\angle \mathrm{s}$.		
4. $\mathrm{AO}=\mathrm{OC}$	4. Diagonals bisect each other.		
5. $\triangle \mathrm{OAP} \cong \triangle \mathrm{OCQ}$	5. ASA rule of congruency.		
6. Area of $\triangle \mathrm{OAP}=$ area of $\triangle \mathrm{OCQ}$	6. Congruence area axiom.		
7. Area of $\triangle \mathrm{OAP}+$ area of quad. AOQD $=$ area of $\triangle \mathrm{OCQ}+$ area of quad. AOQD	7. Adding same area on both sides.		
8. Area of quad. $\mathrm{APQD}=$ area of $\triangle \mathrm{ACD}$	8. Addition area axiom.		
9. Area of quad. APQD $=\frac{1}{2}$ Q.E.D.	9. From of $\\| \mathrm{gm}$ and 1.		

5. In quadrilateral $A B C D, M$ is mid-point of the diagonal $A C$. Prove that area $\mathrm{ABMD}=$ area of quad. DMBC.

Solution:

Statements	Reasons
1. BM is median of $\triangle \mathrm{BCA}$	1. M is mid-point of AC (given).
2. Area of $\triangle \mathrm{ABM}=$ area of $\triangle \mathrm{MBC}$	2. Median divides a Δ into two $\Delta \mathrm{s}$ of equal area.
3. DM is median of $\triangle \mathrm{DAC}$	3. M is mid-point of AC (given).
4. Area of $\triangle \mathrm{DAM}=$ area of $\triangle \mathrm{DMC}$	4. Median divides a triangle into two Δ s of equal area.
5. Area of $\triangle \mathrm{ABM}+$ area of $\triangle \mathrm{DAM}=$ area of $\Delta \mathrm{MBC}+$ area of $\triangle \mathrm{DMC}$	5. Adding 2 and 4.
6. Area of quad. $\mathrm{ABMD}=$ area of quad. DMBC Q.E.D.	6. Addition area axiom.

6. In the adjoining figure, ABCDE is any pentagon. BP drawn parallel to AC meets produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove

DC that area of $\mathrm{ABCDE}=$ area of $\triangle \mathrm{APQ}$.

Solution:

$\triangle \mathrm{PCA}$ and $\triangle \mathrm{BCA}$ are on the same base CA and between same parallels $\mathrm{BP} \| \mathrm{AC}$.
\therefore Area of $\triangle \mathrm{BCA}=$ area of $\triangle \mathrm{PCA}$
$\triangle E A D$ and $\triangle Q A D$ are on the same base $A D$ and between same parallels $E Q \| A D$,
\therefore Area of $\triangle E A D=$ area of $\triangle Q A D$
Also, area of $\triangle A C D=$ area of $\triangle A C D$... (iii)
On adding (i), (iii) and (ii), we get area of $\triangle B C A+$ area of $\triangle A C D+$ area of $\triangle E A D$
$=$ area of $\triangle \mathrm{PCA}+$ area of $\triangle \mathrm{ACD}+$ area of $\triangle \mathrm{QAD}$
$\Rightarrow A r e a ~ o f ~ A B C D E=$ area of $\triangle A P Q$.
7. The diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that area of $\triangle O A D=$ area of $\triangle O B C$. Prove that $A B C D$ is a trapezium.

Solution:
Draw $\mathrm{DM} \perp \mathrm{AB}$ and $\mathrm{CN} \perp \mathrm{AB}$.
As DM and CN are both perpendiculars to AB , therefore, $\mathrm{DM} \| \mathrm{CN}$.
Given area of $\Delta \mathrm{OAD}=$ area of $\Delta \mathrm{OBC}$
\Rightarrow Area of $\Delta \mathrm{OAD}+$ area of $\Delta \mathrm{OAB}=$ area of $\Delta \mathrm{OBC}+$ area of $\Delta \mathrm{OAB}$
(adding same area on both sides)
\Rightarrow Area of $\Delta \mathrm{ABD}=$ area of $\Delta \mathrm{ABC}$
$\Rightarrow \frac{1}{2} \mathrm{AB} \times \mathrm{DM}=\frac{1}{2} \mathrm{AB} \times \mathrm{CN}$
$\Rightarrow \mathrm{DM}=\mathrm{CN}$.
Thus $\mathrm{DM} \| \mathrm{CN}$ and $\mathrm{DM}=\mathrm{CN}$, therefore, DMNC is a parallelogram
\Rightarrow D C || MN i.e. DC || AB.
Hence, ABCD is a trapezium.
8. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and
$B C$ at Y.
Prove that: area of $\triangle A D X=$ area of $\triangle A C Y$.

Solution:

Join CX.
As triangles ADX and ACX have same base AX and are between the same Parallels (AB || DC given, so, $A X$ || DC),
\therefore Area of $\triangle \mathrm{ADX}=$ area of $\triangle \mathrm{ACX}$
As triangles $A C Y$ and $A C X$ have same base $A C$ and are between the same parallels (XY \| AC given),
\therefore Area of $\triangle A C Y=$ area of $\triangle A C X$
From (i) and (ii), we get area of $\triangle A D X=$ area of $\triangle A C Y$.
9. $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| C A$ and $F C \| A B$ and F respectively, show that area of $\triangle A B E=$ area of $\triangle A C F$.

Solution:

As $\triangle \mathrm{ABE}$ and $\| \mathrm{gm}$ EBCY have the same base BE and are between the same parallels
BE || CA (given),
\therefore Area of $\triangle \mathrm{ABE}=\frac{1}{2} \times$ Area of $\|$ gm EBCY
As $\triangle \mathrm{ACF}$ and $\|$ gm XBCF have the same base CF and are between the same parallels FC || AB (given),
\therefore Area of $\triangle \mathrm{ACF}=\frac{1}{2} \times$ Area of $\| \mathrm{gm} \mathrm{XBCF}$
But || gm EBCY and || gm XBCF have the same base BC and are between the same parallels (XY || BC given),
\therefore Area of $\| \mathrm{gm}$ EBCY $=$ area of $\| \mathrm{gm}$ XBCF
$\Rightarrow \frac{1}{2} \times$ Area of $\left.\left|\mid\right.$ gm EBCY $=\frac{1}{2} \times$ Area of $| \right\rvert\,$ gm XBCF
\Rightarrow Area of $\triangle \mathrm{ABE}=$ area of $\triangle \mathrm{ACF}$
10. In the adjoining figure, PQRS and $P X Y Z$ are two parallelograms of equal SX is parallel to YR.

Solution:

Join XR, SY.
Given area of $\|$ gm PQSR $=$ area of $\| \mathrm{gm}$ PXYZ.

Subtract area of $\|$ gm PSOX from both sides.
\therefore Area of $\| \mathrm{gm}$ XORQ $=$ area of $\| \mathrm{gm}$ SZYO
\Rightarrow Area of Δ
XOR $=$ area of \triangle SYO (because diagonal divides a || gm into two equal areas)
Adding area of Δ OYR to both sides, we get area of $\Delta X Y R=$ area of $\Delta S Y R$.

An Innovative Learning Methodology by IITians.
Also the Δs XYR and SYR have the same base YR, therefore, these lie between the same Parallels \Rightarrow SX is parallel to YR.
11. In the adjoining figure, $A B C D, D C F E$ and $A B F E$ are parallelograms. Show that area of $\triangle A D E=$ area of $\triangle B C F$.

Solution:

As ABCD is a parallelogram, $\mathrm{AD}=\mathrm{BC}$ (opp. sides of a \| gm)
Similarly, $\mathrm{DE}=\mathrm{CF}$ and $\mathrm{AE}=\mathrm{BF}$.
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCF}$,
$\mathrm{AD}=\mathrm{BC}, \mathrm{DE}=\mathrm{CF}$ and $\mathrm{AE}=\mathrm{BF}$

$\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}$ (by SSS rule of congruency)
\therefore Area of $\triangle \mathrm{ADE}=$ area of $\triangle \mathrm{BCF}$ (congruent figures have equal areas)
12. Triangles $A B C$ and $D B C$ are on the same base $B C$ with A, D on opposite sides of $B C$. If area of $\triangle A B C=$ area of $\triangle \mathrm{DBC}$, prove that BC bisects AD .

Solution:

Let BC and AD intersect at 0 .
Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{BC}$.
Given area of $\Delta \mathrm{ABC}=$ area of $\Delta \mathrm{DBC}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \mathrm{BC} \times \mathrm{AM}=\frac{1}{2} \mathrm{BC} \times \mathrm{DN} \\
& \Rightarrow \mathrm{AM}=\mathrm{DN} .
\end{aligned}
$$

In $\triangle \mathrm{AMO}$ and $\triangle \mathrm{DNO}$,
$\angle \mathrm{AOM}=\angle \mathrm{DON}$ (vert. opp. $\angle \mathrm{s}$)
$\angle \mathrm{AMO}=\angle \mathrm{DNO}$ (each angle $\left.=90^{\circ}\right)$
$\mathrm{AM}=\mathrm{DN}$ (proved above)
$\therefore \Delta \mathrm{AMO} \cong \Delta \mathrm{DNO}$ (AAS rule of congruency)
$\therefore \mathrm{A} \mathrm{O}=\mathrm{DO}$ (c.p.c.t.)
Hence, $B C$ bisects AD.
13. In the adjoining figure, ABCD is a parallelogram and BC is produced to a point
Q such that $C Q=A D$. If $A Q$ intersects $D C$ at P, show that area of $\Delta \mathrm{BPC}=$ area of $\triangle \mathrm{DPQ}$.

Solution:

Join AC. A s triangles BPC and APC have same base PC and are between the
same parallels ($A B|\mid D C$ i.e. $A B| \mid P C$),
\therefore Area of $\triangle \mathrm{BPC}=$ area of $\triangle \mathrm{APC} \ldots$ (i)
In quad. $A D Q C, A D \| C Q$
($\because \mathrm{AD}|\mid \mathrm{BC}$, opp. sides of || gm ABCD)
$\mathrm{AD}=\mathrm{CQ}$ (given)
\therefore ADQC is a parallelogram, so its diagonals AQ and DC bisect each other
i.e. $\mathrm{DP}=\mathrm{PC}$ and $\mathrm{AP}=\mathrm{PQ}$.

In $\triangle A P C$ and $\triangle Q P D, P C=D P$
$A P=P Q$
$\angle \mathrm{APC}=\angle \mathrm{QPD} \quad$ (vert. opp. \angle s)
$\Delta \mathrm{APC} \cong \triangle \mathrm{QPD}$
\therefore Area of $\triangle \mathrm{APC}=$ area of $\triangle \mathrm{DPQ} \ldots$... (ii)

From (i) and (ii), we get
Area of $\triangle \mathrm{BPC}=$ area of $\triangle \mathrm{DPQ}$.
14. ABC is a triangle whose area is $50 \mathrm{~cm}^{2}$. E and F are mid-points of the sides AB and AC respectively. Prove that EBCF is a trapezium. Also find its area.

Solution:

Since E and F are mid-points of the sides AB and AC respectively,
$E F \| B C$ and $E F=1$
2 BC.
As EF \| $\operatorname{BC}, E B C F$ is a trapezium.

From A, draw $A M \perp B C$.
Let AM meet EF at N .
Since EF || BC, $\angle E N A=\angle B M N$.
But $\angle \mathrm{BMN}=90^{\circ}(\because \mathrm{AM} \perp \mathrm{BC})$
So $\angle E N A=90^{\circ}$ i.e. $A N \perp E F$.
Also, as E is mid-point of AB and $\mathrm{EN} \| \mathrm{BM}, \mathrm{N}$ is mid-point of AM .
Now, area of $\Delta \mathrm{AEF}=\frac{1}{2} \mathrm{EF} \times \mathrm{AN}=\frac{1}{2}\left(\frac{1}{2} \mathrm{BC} \times \frac{1}{2} \mathrm{AM}\right)=\frac{1}{4}\left(\frac{1}{2} \mathrm{BC} \times \mathrm{AM}\right)=\frac{1}{4}($ area of $\triangle \mathrm{ABC})$

MATHEMATICS

$=\frac{1}{4}\left(50 \mathrm{~cm}^{2}\right)=12.5 \mathrm{~cm}^{2}$.
\therefore Area of trapezium EBCF $=$ area of $\triangle \mathrm{ABC}-$ area of $\triangle \mathrm{AEF}$
$=50 \mathrm{~cm}^{2}-12 \cdot 5 \mathrm{~cm}^{2}=37 \cdot 5 \mathrm{~cm}^{2}$.
15. Prove that the area of the quadrilateral formed by joining the mid-points of the adjacent sides of a quadrilateral is half the area of the given quadrilateral.

Solution:

A quadrilateral ABCD, and PQRS is the quadrilateral formed by joining mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively.
To prove: Area of quad. $P Q R S=\frac{1}{2}$ area of quad. $A B C D$.

Construction: Join AC and AR.
Proof:

Statements	Reasons
1. Area of $\triangle A R D=\frac{1}{2}$ area of $\triangle A C D$	1. Median divides a triangle into two triangles of equal area.
2. Area of $\triangle \mathrm{SRD}=\frac{1}{2}$ area of $\triangle \mathrm{ARD}$	2. Same as in 1.
3. Area of $\triangle S R D=\frac{1}{4}$ area of $\triangle A C D$	3. From 1 and 2.
4. Area of $\triangle P B Q=\frac{1}{4}$ area of $\triangle \mathrm{ABC}$	4. As in 3.
5. Area of $\begin{aligned} & \mathrm{f} \triangle \mathrm{SRD}+\text { area of } \triangle \mathrm{PBQ} \\ & =\frac{1}{4} \text { (area of } \triangle \mathrm{ACD}+\text { area of } \triangle \mathrm{ABC} \text {) } \end{aligned}$	5. Adding 3 and 4.
$\begin{aligned} & \text { 6. Area of } \triangle \mathrm{SRD}+\text { area of } \triangle \mathrm{PBQ} \\ & \qquad=\frac{1}{4} \text { area of quad. } \mathrm{ABCD} \end{aligned}$	6. Addition area axiom.
7. Area of $\triangle A P S+$ area of $\triangle Q C R$ $=\frac{1}{4}$ area of quad. $A B C D$	7. Same as in 6.
8. Area of $\triangle A P S+$ area of $\triangle P B Q+$ area of $\triangle Q C R$ + area of $\triangle S R D=\frac{1}{2}$ area of quad. $A B C D$	8. Adding 6 and 7.
9. Area of $\triangle A P S+$ area of $\triangle P B Q+$ area of $\triangle Q C R$ + area of \triangle SRD + area of quad. $\mathrm{PQRS}=$ area of quad. $A B C D$	9. Addition area axiom.
10. Area of quad. $\mathrm{PQRS}=$ $\begin{aligned} & \frac{1}{2} \text { area of quad. } A B C D \\ & \text { Q.E.D. } \end{aligned}$	10. Subtracting 8 from 9 .

16. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that area of $\triangle A P B=$ area of $\triangle B Q C$.

Solution:

Given a parallelogram $A B C D$, and P and Q are points lying on the sides $D C$ and $A D$ respectively as shown in the adjoining figure. As $\triangle A P B$ and $\| g m ~ A B C D$ are on the same base and between the same parallels AB and DC,
area of $\triangle \mathrm{APB}=\frac{1}{2}$ area of $\|$ gm ABCD ... (i)
Also, as $\triangle \mathrm{BQC}$ and $\| \mathrm{gm} \mathrm{ABCD}$ are on the same BC and between the
 and $B C$,
area of $\triangle \mathrm{BQC}=\frac{1}{2}$ area of $\| \mathrm{gm} \mathrm{ABCD}$
From (i) and (ii), we get
Area of $\triangle A P B=$ area of $\triangle B Q C$.
17. In the adjoining figure, ABCD is a rectangle with sides $\mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{AD}=5 \mathrm{~cm}$. Compute
(iii) Area of parallelogram ABEF
(iv)Area of $\Delta E F G$.

Solution:
(iii) Area of || gm ABEF= area of rectangle ABCD (on the same base AB
 and between the same parallels AB and DE)
$=(8 \times 5) \mathrm{cm}^{2}=40 \mathrm{~cm}^{2}$.
(iv)Area of $\triangle E F G=\frac{1}{2} \times$ area of $\|$ gm ABEF
(On the same base FE and between the same parallels FE and AG)

$$
=\left(\frac{1}{2} \times 40\right) \mathrm{cm}^{2}=20 \mathrm{~cm}^{2}
$$

18. $A B C D$ is a trapezium with $A B \| D C$, and diagonals $A C$ and $B D$ meet at 0 . Prove that area of $\triangle D A O=$ area of $\triangle \mathrm{OBC}$.

Solution:

Statements	Reasons	
1. $\mathrm{AB} \\| \mathrm{DC}$	1. Given.	
2. Area of $\triangle \mathrm{ABD}=$ area of $\triangle \mathrm{ABC}$	2. Δ s on the same base AB and between the same parallels AB and CD are equal in area.	
3. Area of $\triangle \mathrm{DAO}+$ area of $\triangle \mathrm{OAB}$ $=$ area of $\triangle \mathrm{OBC}+$ area of $\triangle \mathrm{OAB}$	3. Addition area axiom.	
4. Area of $\triangle \mathrm{DAO}=$ area of $\triangle \mathrm{OBC}$ Q.E.D.	4. Subtracting same area from both sides.	

19. The diagonals of a parallelogram $A B C D$ intersect at O. A straight line through 0 meets $A B$ at P and the opposite side CD at Q. Prove that area of quad.

APABa of $\frac{1}{2} \frac{1}{2}$ gm ABCD.

Solution:

Statements	Reasons		
1. Area of $\triangle \mathrm{ACD}=\frac{1}{2}$ area of $\\| \mathrm{gm} \mathrm{ABCD}$	1. Diagonal divides a $\\| \mathrm{gm}$ into two $\Delta \mathrm{s}$ of equal area.		
In $\triangle O A P$ and $\triangle O C Q$			
2. $\angle \mathrm{OAP}=\angle \mathrm{OCQ}$	2. Alt. $\angle \mathrm{s}$.		
3. $\angle \mathrm{AOP}=\angle \mathrm{COQ}$	3. Vert. opp. $\angle \mathrm{s}$.		
4. $\mathrm{AO}=\mathrm{OC}$	4. Diagonals bisect each other.		
5. $\triangle \mathrm{OAP} \cong \triangle \mathrm{OCQ}$	5. ASA rule of congruency.		
6. Area of $\triangle \mathrm{OAP}=$ area of $\triangle \mathrm{OCQ}$	6. Congruence area axiom.		
7. Area of $\triangle O A P+$ area of quad. $A O Q D$ $=$ area of $\triangle O C Q+$ area of quad. $A O Q D$	7. Adding same area on both sides.		
8. Area of quad. $A P Q D=$ area of $\triangle A C D$	8. Addition area axiom.		
9. Area of quad. $A P Q D$ $\begin{aligned} & =\frac{1}{2} \text { area of } \\| \mathrm{gm} \mathrm{ABCD} \\ & \text { Q.E.D. } \end{aligned}$	9. From 8 and 1.		

$\mathrm{ABMD}=$ area of quad. DMBC .

Solution:

Statements	Reasons
1. BM is median of $\triangle \mathrm{BCA}$	1. M is mid-point of AC (given).
2. Area of $\triangle \mathrm{ABM}=$ area of $\triangle \mathrm{MBC}$	2. Median divides a Δ into two $\Delta \mathrm{s}$ of equal area.
3. DM is median of $\triangle \mathrm{DAC}$	3. M is mid-point of AC (given).
4. Area of $\triangle \mathrm{DAM}=$ area of $\triangle \mathrm{DMC}$	4. Median divides a triangle into two Δs of equal area.
5. Area of $\triangle \mathrm{ABM}+$ area of $\triangle \mathrm{DAM}=$ area of $\Delta \mathrm{MBC}+$ area of $\triangle \mathrm{DMC}$	5. Adding 2 and 4.
6. Area of quad. $\mathrm{ABMD}=$ area of quad. DMBC Q.E.D.	6. Addition area axiom.

21. In the adjoining figure, ABCDE is any pentagon. BP drawn parallel to AC meets produced at P and EQ drawn parallel to AD meets CD produced at Q . Prove

DC that area of $\mathrm{ABCDE}=$ area of $\triangle \mathrm{APQ}$.

Solution:
$\triangle \mathrm{PCA}$ and $\triangle \mathrm{BCA}$ are on the same base CA and between same parallels $\mathrm{BP} \| \mathrm{AC}$.
\therefore Area of $\triangle \mathrm{BCA}=$ area of $\triangle \mathrm{PCA}$
$\triangle E A D$ and $\triangle Q A D$ are on the same base $A D$ and between same parallels $E Q \| A D$,
\therefore Area of $\triangle E A D=$ area of $\triangle Q A D$
Also, area of $\triangle A C D=$ area of $\triangle A C D$
On adding (i), (iii) and (ii), we get area of $\triangle \mathrm{BCA}+$ area of $\triangle \mathrm{ACD}+$ area of $\triangle \mathrm{EAD}$
$=$ area of $\triangle \mathrm{PCA}+$ area of $\triangle \mathrm{ACD}+$ area of $\triangle \mathrm{QAD}$
\Rightarrow Area of $\mathrm{ABCDE}=$ area of $\triangle \mathrm{APQ}$.
22. The diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at 0 in such a way that area of $\triangle \mathrm{OAD}=$ area of $\triangle \mathrm{OBC}$. Prove that ABCD is a trapezium.

Solution:

Draw $\mathrm{DM} \perp \mathrm{AB}$ and $\mathrm{CN} \perp \mathrm{AB}$.
As DM and CN are both perpendiculars to AB , therefore, $\mathrm{DM} \| \mathrm{CN}$.
Given area of $\triangle \mathrm{OAD}=$ area of $\triangle \mathrm{OBC}$
\Rightarrow Area of $\Delta \mathrm{OAD}+$ area of $\Delta \mathrm{OAB}=$ area of $\Delta \mathrm{OBC}+$ area of $\Delta \mathrm{OAB}$
(adding same area on both sides)
\Rightarrow Area of $\Delta \mathrm{ABD}=$ area of $\Delta \mathrm{ABC}$
$\Rightarrow \frac{1}{2} \mathrm{AB} \times \mathrm{DM}=\frac{1}{2} \mathrm{AB} \times \mathrm{CN}$
$\Rightarrow \mathrm{DM}=\mathrm{CN}$.
Thus $D M \| C N$ and $D M=C N$, therefore, $D M N C$ is a parallelogram
$\Rightarrow D C \| M N$ i.e. $D C \| A B$.
Hence, ABCD is a trapezium.
23. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and
$B C$ at Y.
Prove that: area of $\triangle A D X=$ area of $\triangle A C Y$.

Solution:

Join CX.
As triangles ADX and ACX have same base AX and are between the same
Parallels (AB || DC given, so, AX || DC),
\therefore Area of $\triangle A D X=$ area of $\triangle A C X$
As triangles ACY and ACX have same base AC and are between the same parallels
(XY || AC given),
\therefore Area of $\triangle A C Y=$ area of $\triangle A C X$

From (i) and (ii), we get area of $\triangle \mathrm{ADX}=$ area of $\triangle \mathrm{ACY}$.
24. $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E$ || $C A$ and $F C|\mid A B$ and F respectively, show that area of $\triangle A B E=$ area of $\triangle A C F$.

Solution:

As $\triangle \mathrm{ABE}$ and $\| \mathrm{gm}$ EBCY have the same base BE and are between the same parallels $B E \| C A$ (given),
\therefore Area of $\triangle \mathrm{ABE}=\frac{1}{2} \times$ Area of $\|$ gm EBCY
As $\triangle \mathrm{ACF}$ and \| gm XBCF have the same base CF and are between the same parallels FC || AB (given),
\therefore Area of $\triangle \mathrm{ACF}=\frac{1}{2} \times$ Area of $\| \mathrm{gm}$ XBCF .
But || gm EBCY and || gm XBCF have the same base BC and are between the same parallels (XY || BC given),
\therefore Area of $\| \mathrm{gm}$ EBCY $=$ area of $\| \mathrm{gm}$ XBCF
$\Rightarrow \frac{1}{2} \times$ Area of $\left|\mid\right.$ gm EBCY $=\frac{1}{2} \times$ Area of $\|$ gm XBCF
\Rightarrow Area of $\triangle \mathrm{ABE}=$ area of $\triangle \mathrm{ACF}$
25. In the adjoining figure, $P Q R S$ and $P X Y Z$ are two parallelograms of equal SX is parallel to YR.

Solution:

Join XR, SY.
Given area of $\|$ gm PQSR $=$ area of $\|$ gm PXYZ.

Subtract area of $\|$ gm PSOX from both sides.
\therefore Area of \| gm XORQ = area of \| gm SZYO
\Rightarrow Area of Δ
XOR $=$ area of \triangle SYO (because diagonal divides a || gm into two equal areas)
Adding area of Δ OYR to both sides, we get area of $\Delta \mathrm{XYR}=$ area of $\Delta \mathrm{SYR}$.
Also the Δs XYR and SYR have the same base YR, therefore, these lie between the same
Parallels \Rightarrow SX is parallel to YR.
26. In the adjoining figure, $A B C D, D C F E$ and $A B F E$ are parallelograms. Show that area of $\triangle A D E=$ area of $\triangle B C F$.

Solution:

As ABCD is a parallelogram, $\mathrm{AD}=\mathrm{BC}$ (opp. sides of a \| gm)
Similarly, $\mathrm{DE}=\mathrm{CF}$ and $\mathrm{AE}=\mathrm{BF}$.
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCF}$,
$\mathrm{AD}=\mathrm{BC}, \mathrm{DE}=\mathrm{CF}$ and $\mathrm{AE}=\mathrm{BF}$
$\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}$ (by SSS rule of congruency)
\therefore Area of $\triangle \mathrm{ADE}=$ area of $\triangle \mathrm{BCF}$ (congruent figures have equal areas)
27. Triangles $A B C$ and $D B C$ are on the same base $B C$ with A, D on opposite sides of $B C$. If area of $\triangle A B C=$ area of $\triangle \mathrm{DBC}$, prove that BC bisects $A D$.

Solution:

Let BC and AD intersect at 0 .
Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{BC}$.
Given area of $\Delta \mathrm{ABC}=$ area of $\Delta \mathrm{DBC}$
$\Rightarrow \frac{1}{2} \mathrm{BC} \times \mathrm{AM}=\frac{1}{2} \mathrm{BC} \times \mathrm{DN}$
$\Rightarrow \mathrm{AM}=\mathrm{DN}$.
In $\triangle \mathrm{AMO}$ and $\triangle \mathrm{DNO}$,
$\angle \mathrm{AOM}=\angle \mathrm{DON}$ (vert. opp. $\angle \mathrm{s}$)
$\angle \mathrm{AMO}=\angle \mathrm{DNO}$ (each angle $\left.=90^{\circ}\right)$
$\mathrm{AM}=\mathrm{DN}$ (proved above)
$\therefore \Delta \mathrm{AMO} \cong \Delta \mathrm{DNO}$ (AAS rule of congruency)
$\therefore \mathrm{A} 0=\mathrm{DO}$ (c.p.c.t.)
Hence, BC bisects AD.
28. In the adjoining figure, $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $C Q=A D$. If $A Q$ intersects $D C$ at P, show that area of $\Delta \mathrm{BPC}=$ area of $\triangle \mathrm{DPQ}$.

Solution:

Join AC. A s triangles BPC and APC have same base PC and are between the

same parallels ($\mathrm{AB}|\mid \mathrm{DC}$ i.e. $\mathrm{AB} \mathrm{|\mid} \mathrm{PC)}$,
\therefore Area of $\triangle \mathrm{BPC}=$ area of $\triangle \mathrm{APC} \ldots$ (i)
In quad. $\mathrm{ADQC}, \mathrm{AD} \| \mathrm{CQ}$
($\because \mathrm{AD}|\mid \mathrm{BC}$, opp. sides of || gm ABCD)
$A D=C Q$ (given)
\therefore ADQC is a parallelogram, so its diagonals AQ and DC bisect each other
i.e. $\mathrm{DP}=\mathrm{PC}$ and $\mathrm{AP}=\mathrm{PQ}$.

In $\triangle \mathrm{APC}$ and $\triangle \mathrm{QPD}, \mathrm{PC}=\mathrm{D} P$
$\mathrm{AP}=\mathrm{PQ}$
$\angle \mathrm{APC}=\angle \mathrm{QPD} \quad$ (vert. opp. \angle s)
$\Delta \mathrm{APC} \cong \triangle \mathrm{QPD}$
\therefore Area of $\triangle \mathrm{APC}=$ area of $\triangle \mathrm{DPQ} \ldots$ (ii)

From (i) and (ii), we get
Area of $\triangle \mathrm{BPC}=$ area of $\triangle \mathrm{DPQ}$.
29. $A B C$ is a triangle whose area is $50 \mathrm{~cm}^{2}$. E and F are mid-points of the sides $A B$ and $A C$ respectively. Prove that EBCF is a trapezium. Also find its area.

Solution:

Since E and F are mid-points of the sides $A B$ and $A C$ respectively,
$\mathrm{EF} \| \mathrm{BC}$ and $\mathrm{EF}=1$
2 BC.
As EF || $\mathrm{BC}, \mathrm{EBCF}$ is a trapezium.

From A, draw $A M \perp B C$.
Let AM meet EF at N .
Since EF || $B C, \angle E N A=\angle B M N$.
But $\angle B M N=90^{\circ}(\because A M \perp B C)$
So $\angle E N A=90^{\circ}$ i.e. $A N \perp E F$.
Also, as E is mid-point of $A B$ and EN || BM, N is mid-point of AM.
Now, area of $\Delta \mathrm{AEF}=\frac{1}{2} \mathrm{EF} \times \mathrm{AN}=\frac{1}{2}\left(\frac{1}{2} \mathrm{BC} \times \frac{1}{2} \mathrm{AM}\right)=\frac{1}{4}\left(\frac{1}{2} \mathrm{BC} \times \mathrm{AM}\right)=\frac{1}{4}($ area of $\Delta \mathrm{ABC})$
$=\frac{1}{4}\left(50 \mathrm{~cm}^{2}\right)=12.5 \mathrm{~cm}^{2}$.
\therefore Area of trapezium EBCF $=$ area of $\triangle \mathrm{ABC}$ - area of $\triangle \mathrm{AEF}$
$=50 \mathrm{~cm}^{2}-12 \cdot 5 \mathrm{~cm}^{2}=37 \cdot 5 \mathrm{~cm}^{2}$.
30. Prove that the area of the quadrilateral formed by joining the mid-points of the adjacent sides of a quadrilateral is half the area of the given quadrilateral.

Solution:

A quadrilateral $A B C D$, and PQRS is the quadrilateral formed by joining mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively.
To prove: Area of quad. $P Q R S=\frac{1}{2}$ area of quad. $A B C D$.

Construction: Join AC and AR.
Proof:

Statements	Reasons
1. Area of $\triangle A R D=\frac{1}{2}$ area of $\triangle A C D$	1. Median divides a triangle into two triangles of equal area.
2. Area of \triangle SRD $=\frac{1}{2}$ area of $\triangle \mathrm{ARD}$	2. Same as in 1.
3. Area of \triangle SRD $=\frac{1}{4}$ area of $\triangle \mathrm{ACD}$	3. From 1 and 2.
4. Area of $\triangle \mathrm{PBQ}=\frac{1}{4}$ area of $\triangle \mathrm{ABC}$	4. As in 3.
5. Area of $\triangle S R D+$ area of $\triangle P B Q$ $=\frac{1}{4}($ area of $\triangle A C D+$ area of $\triangle A B C)$	5. Adding 3 and 4.
6. Area of \triangle SRD + area of \triangle PBQ $=\frac{1}{4}$ area of quad. $A B C D$	6. Addition area axiom.
$\begin{aligned} \text { 7. Area of } \triangle \mathrm{APS}+\text { area of } & \triangle \mathrm{QCR} \\ & =\frac{1}{4} \text { area of quad. } \mathrm{ABCD} \end{aligned}$	7. Same as in 6.
8. Area of $\triangle A P S+$ area of $\triangle P B Q+$ area of $\triangle Q C R$ + area of $\triangle S R D=\frac{1}{2}$ area of quad. $A B C D$	8. Adding 6 and 7.
9. Area of $\triangle \mathrm{APS}+$ area of $\triangle \mathrm{PBQ}+$ area of $\triangle \mathrm{QCR}$ + area of \triangle SRD + area of quad. $\mathrm{PQRS}=$ area of quad. ABCD	9. Addition area axiom.
10. Area of quad. $\mathrm{PQRS}=$ $\begin{aligned} & \frac{1}{2} \text { area of quad. } \mathrm{ABCD} \\ & \text { Q.E.D. } \end{aligned}$	10. Subtracting 8 from 9 .

