Board – ICSE

**Topic – Circle** 

1. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that area of  $\triangle APB =$  area of  $\triangle BQC$ .

### Solution:

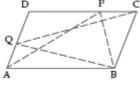
Given a parallelogram ABCD, and P and Q are points lying on the sides DC and AD respectively as shown in the adjoining figure. As  $\Delta$ APB and || gm ABCD are on the same base and between the same parallels AB and DC, P C

area of 
$$\triangle APB = \frac{1}{2}$$
 area of || gm ABCD ... (i)

Also, as  $\Delta$ BQC and || gm ABCD are on the same BC and between the same parallels AD and BC,

area of  $\triangle BQC = \frac{1}{2}$  area of || gm ABCD ... (ii) From (i) and (ii), we get

Area of  $\triangle APB = \text{area of } \triangle BQC.$ 



Personalized Insights

ssisted Practice | Expert Guidance |

An Innovative Learning Methodology by IlTians.

- 2. In the adjoining figure, ABCD is a rectangle with sides AB = 8 cm and AD = 5 cm. Compute
  - (i) Area of parallelogram ABEF
  - (ii) Area of  $\Delta$ EFG.

Solution:

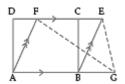
(i) Area of || gm ABEF= area of rectangle ABCD (on the same base AB and between the same parallels AB and DE)

$$= (8 \times 5) \text{ cm}^2 = 40 \text{ cm}^2.$$

(ii) Area of  $\triangle EFG = \frac{1}{2} \times \text{ area of } || \text{ gm ABEF}$ 

(On the same base FE and between the same parallels FE and AG)

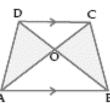
$$= \left(\frac{1}{2} \times 40\right) \mathrm{cm}^2 = 20 \mathrm{~cm}^2$$





An Innovative Learning Methodology by IlTians.

3. ABCD is a trapezium with AB || DC, and diagonals AC and BD meet at O. Prove that area of  $\Delta$  DAO = area of  $\Delta$  OBC.



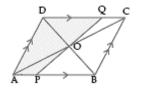
#### Solution:

| Statements                                                                                                  | Reasons                                                                                     |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1. AB    DC                                                                                                 | 1. Given.                                                                                   |
| 2. Area of $\triangle ABD = \text{area of } \triangle ABC$                                                  | 2. ∆s on the same base AB and between<br>the same parallels AB and CD are<br>equal in area. |
| 3. Area of $\triangle DAO$ + area of $\triangle OAB$<br>= area of $\triangle OBC$ + area of $\triangle OAB$ | 3. Addition area axíom.                                                                     |
| 4. Area of $\triangle DAO = \text{area of } \triangle OBC$<br>Q.E.D.                                        | 4. Subtracting same area from both sides.                                                   |

4. The diagonals of a parallelogram ABCD intersect at O. A straight line through O meets AB at P and the opposite side CD at Q. Prove that area of quad. APQD =  $\frac{1}{2}$  Area of || gm ABCD.

Solution:

| Statements                                                                                        | Reasons                                                                   |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1. Area of $\triangle ACD = \frac{1}{2}$ area of $\parallel$ gm ABCD                              | <ol> <li>Diagonal divides a ∥gm into two ∆s of<br/>equal area.</li> </ol> |
| In ΔOAP and ΔOCQ                                                                                  |                                                                           |
| 2. ∠OAP = ∠OCQ                                                                                    | 2. Alt.∠s.                                                                |
| 3. ∠AOP = ∠COQ                                                                                    | 3. Vert. opp.∠s.                                                          |
| 4. AO = OC                                                                                        | 4. Diagonals bisect each other.                                           |
| 5. ΔOAP ≡ ΔOCQ                                                                                    | 5. ASA rule of congruency.                                                |
| 6. Area of $\triangle OAP = area of \triangle OCQ$                                                | 6. Congruence area axiom.                                                 |
| 7. Area of $\triangle OAP$ + area of quad. AOQD<br>= area of $\triangle OCQ$ + area of quad. AOQD | 7. Adding same area on both sides.                                        |
| 8. Area of quad. APQD = area of $\triangle$ ACD                                                   | 8. Addition area axiom.                                                   |
| 9. Area of quad. APQD                                                                             | 9. From 8 and 1.                                                          |
| $=\frac{1}{2}$ area of $\parallel$ gm ABCD                                                        |                                                                           |
| Q.E.D.                                                                                            |                                                                           |

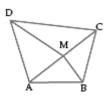




An Innovative Learning Methodology by IlTians.

of

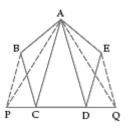
5. In quadrilateral ABCD, M is mid-point of the diagonal AC. Prove that area quad. ABMD = area of quad. DMBC.



Solution:

| Statements                                                                                               | Reasons                                                                      |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <ol> <li>BM is median of ∆BCA</li> </ol>                                                                 | 1. M is mid-point of AC (given).                                             |
| 2. Area of $\triangle ABM$ = area of $\triangle MBC$                                                     | <ol> <li>Median divides a Δinto two Δs of<br/>equal area.</li> </ol>         |
| 3. DM is median of $\Delta DAC$                                                                          | 3. M is mid-point of AC (given).                                             |
| 4. Area of $\Delta DAM = area of \Delta DMC$                                                             | <ol> <li>Median divides a triangle into two<br/>Δs of equal area.</li> </ol> |
| 5. Area of $\triangle ABM$ + area of $\triangle DAM$ = area of $\triangle MBC$ + area of $\triangle DMC$ | 5. Adding 2 and 4.                                                           |
| 6. Area of quad. ABMD = area of quad. DMBC<br>Q.E.D.                                                     | 6. Addition area axiom.                                                      |

6. In the adjoining figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that area of ABCDE = area of  $\triangle$ APQ.



Solution:

 $\Delta$ PCA and  $\Delta$ BCA are on the same base CA and between same parallels BP || AC.

: Area of  $\Delta$ BCA = area of  $\Delta$ PCA ... (i)

 $\Delta$ EAD and  $\Delta$ QAD are on the same base AD and between same parallels EQ || AD,

: Area of  $\Delta EAD$  = area of  $\Delta QAD$  ... (ii)

Also, area of  $\triangle ACD$  = area of  $\triangle ACD$  ... (iii)

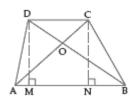
On adding (i), (iii) and (ii), we get area of  $\Delta$ BCA + area of  $\Delta$ ACD + area of  $\Delta$ EAD

= area of  $\Delta$ PCA + area of  $\Delta$ ACD + area of  $\Delta$ QAD



 $\Rightarrow$  Area of ABCDE = area of  $\triangle$ APQ.

7. The diagonals AC and BD of a quadrilateral ABCD intersect at 0 in such a way that area of  $\Delta$  OAD = area of  $\Delta$  OBC. Prove that ABCD is a trapezium.



#### Solution:

Draw DM  $\perp$  AB and CN  $\perp$  AB.

As DM and CN are both perpendiculars to AB, therefore, DM || CN.

Given area of  $\triangle$  OAD = area of  $\triangle$  OBC

 $\Rightarrow$  Area of  $\triangle$  OAD + area of  $\triangle$  OAB = area of  $\triangle$  OBC + area of  $\triangle$  OAB

(adding same area on both sides)

 $\Rightarrow$  Area of  $\triangle$  ABD = area of  $\triangle$  ABC

$$\Rightarrow \frac{1}{2}AB \times DM = \frac{1}{2}AB \times CN$$

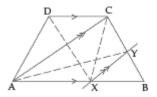
$$\Rightarrow$$
 DM = CN.

Thus DM || CN and DM = CN, therefore, DMNC is a parallelogram

 $\Rightarrow$  D C || MN i.e. DC || AB.

Hence, ABCD is a trapezium.

8. ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that: area of  $\triangle$ ADX = area of  $\triangle$ ACY.



Solution:

Join CX.

As triangles ADX and ACX have same base AX and are between the same Parallels (AB || DC given, so, AX || DC),

Assisted Practice | Expert Guidance | Personalized Insights

An Innovative Learning Methodology by IITians.

: Area of  $\triangle ADX = \text{area of } \triangle ACX$  ... (i)

As triangles ACY and ACX have same base AC and are between the same parallels

(XY || AC given),

: Area of  $\triangle ACY$  = area of  $\triangle ACX$  ... (ii)

From (i) and (ii), we get area of  $\triangle ADX = \text{area of } \triangle ACY$ .

9. XY is a line parallel to side BC of a triangle ABC. If BE || CA and FC || AB meet XY at E and F respectively, show that area of  $\triangle ABE =$  area of  $\triangle ACF$ .

#### Solution:

As  $\triangle$ ABE and || gm EBCY have the same base BE and are between the same parallels BE || CA (given),

∴ Area of 
$$\triangle ABE = \frac{1}{2} \times \text{Area of } || \text{ gm EBCY ... (i)}$$

As  $\triangle$  ACF and || gm XBCF have the same base CF and are between the same parallels FC || AB (given),

$$\therefore \text{ Area of } \Delta \text{ACF} = \frac{1}{2} \times \text{ Area of } || \text{ gm XBCF } ... (ii)$$

But || gm EBCY and || gm XBCF have the same base BC and are between the same parallels (XY || BC given),

```
\therefore Area of || gm EBCY = area of || gm XBCF
```

$$\Rightarrow \frac{1}{2} \times \text{Area of } || \text{ gm EBCY } = \frac{1}{2} \times \text{Area of } || \text{ gm XBCF}$$

 $\Rightarrow$  Area of  $\triangle$ ABE = area of  $\triangle$ ACF

#### 10. In the adjoining figure, PQRS and PXYZ are two parallelograms of equal

#### SX is parallel to YR.

#### Solution:

Join XR, SY.

Given area of || gm PQSR = area of || gm PXYZ.

Subtract area of || gm PSOX from both sides.

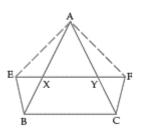
 $\therefore$  Area of || gm XORQ = area of || gm SZYO

 $\Rightarrow$  Area of  $\Delta$ 

XOR = area of  $\Delta$  SYO (because diagonal divides a || gm into two equal areas)

Adding area of  $\Delta$  OYR to both sides, we get area of  $\Delta$  XYR = area of  $\Delta$  SYR.





Assisted Practice | Expert Guidance | Personalized Insights

An Innovative Learning Methodology by IITians.

Also the  $\Delta$ s XYR and SYR have the same base YR, therefore, these lie between the same Parallels  $\Rightarrow$  SX is parallel to YR.

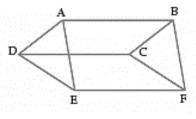
### 11. In the adjoining figure, ABCD, DCFE and ABFE are parallelograms. Show that area of $\triangle ADE =$ area of $\triangle BCF$ .

### Solution:

As ABCD is a parallelogram, AD = B C (opp. sides of a || gm) Similarly, DE = CF and AE = BF. In  $\triangle ADE$  and  $\triangle BCF$ , AD = B C, DE = CF and AE = BF

 $\therefore \Delta ADE \cong \Delta BCF$  (by SSS rule of congruency)

: Area of  $\triangle ADE$  = area of  $\triangle BCF$  (congruent figures have equal areas)



# 12. Triangles ABC and DBC are on the same base BC with A, D on opposite sides of BC. If area of $\Delta$ ABC = area of $\Delta$ DBC, prove that BC bisects AD.

#### Solution:

Let BC and AD intersect at O.

Draw AM  $\perp$  BC and DN  $\perp$  BC.

Given area of  $\Delta$  ABC = area of  $\Delta$  DBC

$$\Rightarrow \frac{1}{2} BC \times AM = \frac{1}{2} BC \times DN$$

 $\Rightarrow$  AM = DN.

In  $\Delta AMO$  and  $\Delta DNO$ ,

 $\angle AOM = \angle DON \text{ (vert. opp. } \angle s)$ 

$$\angle AMO = \angle DNO \text{ (each angle = 90°)}$$

$$AM = DN$$
 (proved above)

 $\therefore \Delta AMO \cong \Delta DNO$  (AAS rule of congruency)

$$\therefore A 0 = D0$$
 (c.p.c.t.)

Hence, BC bisects AD.

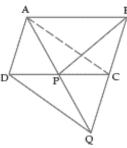
в

13. In the adjoining figure, ABCD is a parallelogram and BC is produced to a point



An Innovative Learning Methodology by IlTians.

Q such that CQ = AD. If AQ intersects DC at P, show that area of  $\Delta BPC = area of \Delta DPQ.$ Solution: Join AC. A s triangles BPC and APC have same base PC and are between the same parallels (AB || DC i.e. AB || PC), : Area of  $\triangle BPC$  = area of  $\triangle APC$  ... (i) In quad. ADQC, AD || CQ (: AD || BC, opp. sides of || gm ABCD) AD = CQ (given) : ADQC is a parallelogram, so its diagonals AQ and DC bisect each other i.e. DP = PC and AP = PQ. In  $\triangle$ APC and  $\triangle$ QPD, PC = D P AP = PQ $\angle APC = \angle QPD$ (vert. opp.  $\angle s$ )  $\Delta APC \cong \Delta OPD$ : Area of  $\triangle APC$  = area of  $\triangle DPQ$  ... (ii) From (i) and (ii), we get



14. ABC is a triangle whose area is 50 cm<sup>2</sup>. E and F are mid-points of the sides AB and AC respectively. Prove that EBCF is a trapezium. Also find its area.

#### Solution:

Since E and F are mid-points of the sides AB and AC respectively,

 $E F \parallel BC and EF = 1$ 

2 BC.

As EF || BC, EBCF is a trapezium.

Area of  $\triangle BPC = \text{area of } \triangle DPQ$ .

From A, draw AM  $\perp$  BC.

Let AM meet EF at N.

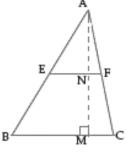
Since EF || BC,  $\angle$  ENA =  $\angle$  BMN.

But  $\angle$  BMN = 90° ( $\because$ AM  $\perp$  BC)

So  $\angle$  ENA = 90° i.e. AN $\perp$  EF.

Also, as E is mid-point of AB and EN || BM, N is mid-point of AM.

Now, area of  $\triangle AEF = \frac{1}{2}EF \times AN = \frac{1}{2}\left(\frac{1}{2}BC \times \frac{1}{2}AM\right) = \frac{1}{4}\left(\frac{1}{2}BC \times AM\right) = \frac{1}{4}$  (area of  $\triangle ABC$ )





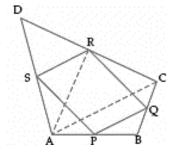
- $=\frac{1}{4}(50 \text{ cm}^2) = 12.5 \text{ cm}^2.$
- $\div$  Area of trapezium EBCF = area of  $\Delta$  ABC area of  $\Delta$  AEF
- $= 50 \text{ cm}^2 12.5 \text{ cm}^2 = 37.5 \text{ cm}^2.$
- 15. Prove that the area of the quadrilateral formed by joining the mid-points of the adjacent sides of a

quadrilateral is half the area of the given quadrilateral.

### Solution:

A quadrilateral ABCD, and PQRS is the quadrilateral formed by joining mid-points of the sides AB, BC, CD and DA respectively.

To prove: Area of quad. PQRS  $=\frac{1}{2}$  area of quad. ABCD.



Construction: Join AC and AR.

### Proof:

| Statements                                                                                                                                            | Reasons                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1. Area of $\triangle ARD = \frac{1}{2}$ area of $\triangle ACD$                                                                                      | <ol> <li>Median divides a triangle into two<br/>triangles of equal area.</li> </ol> |
| 2. Area of $\triangle$ SRD = $\frac{1}{2}$ area of $\triangle$ ARD                                                                                    | 2. Same as in 1.                                                                    |
| 3. Area of $\triangle$ SRD = $\frac{1}{4}$ area of $\triangle$ ACD                                                                                    | 3. From 1 and 2.                                                                    |
| 4. Area of $\triangle PBQ = \frac{1}{4}$ area of $\triangle ABC$                                                                                      | 4. As in 3.                                                                         |
| 5. Area of $\triangle$ SRD + area of $\triangle$ PBQ<br>= $\frac{1}{4}$ (area of $\triangle$ ACD + area of $\triangle$ ABC)                           | 5. Adding 3 and 4.                                                                  |
| 6. Area of $\triangle$ SRD + area of $\triangle$ PBQ<br>= $\frac{1}{4}$ area of quad. ABCD                                                            | 6. Addition area axiom.                                                             |
| 7. Area of $\triangle APS$ + area of $\triangle QCR$<br>= $\frac{1}{4}$ area of quad. ABCD                                                            | 7. Same as in 6.                                                                    |
| 8. Area of $\triangle APS$ + area of $\triangle PBQ$ + area of $\triangle QCR$<br>+ area of $\triangle SRD = \frac{1}{2}$ area of quad. ABCD          | 8. Adding 6 and 7.                                                                  |
| 9. Area of $\triangle APS$ + area of $\triangle PBQ$ + area of $\triangle QCR$<br>+ area of $\triangle SRD$ + area of quad. PQRS = area of quad. ABCD | 9. Addition area axiom.                                                             |
| 10. Area of quad. PQRS =<br>$\frac{1}{2}$ area of quad. ABCD<br>Q.E.D.                                                                                | 10. Subtracting 8 from 9.                                                           |