Assisted Practice | Expert Guidance | Personalized Insights

An Innovative Learning Methodology by IlTians.

Class – 9<sup>th</sup>

**Topic – Congruent Triangles** 

- In the given figure, we have AO = BO and CO = DO Prove that:
  - (i)  $\triangle AOC = \triangle BOD$
  - (ii) AC=BD

#### Solution:

| (i) In $\triangle AOC$ and $\triangle BOD$ |                              |
|--------------------------------------------|------------------------------|
| AO = BO                                    | (given)                      |
| CO = DO                                    | (given)                      |
| $\angle AOC = \angle BOD$                  | (vertically opposite angles) |
| $\Delta AOC \cong \Delta BOD$              | (S. A. S)                    |
| (ii) $AC = BD$                             | (C. P. C. T)                 |



2. In the given figure,  $AB \perp BD$  and AB = CD. Prove that:

 $(\mathbf{i}) \, \Delta \mathbf{A} \mathbf{B} \mathbf{D} \cong \Delta \mathbf{C} \mathbf{D} \mathbf{B}$ 

(ii) AB = CB

#### Solution:

| (i) In $\triangle ABD$ and $\triangle CDB$ |              |
|--------------------------------------------|--------------|
| AB = CD                                    | (given)      |
| BD = BD                                    | (common)     |
| $\angle ABD = \angle CDB$                  | (each 90°)   |
| $\therefore \Delta ABD \cong \Delta CDB$   | (S. A. S)    |
| (ii) $AD = CB$                             | (C. P. C. T) |



3. In the given figure, PL  $\perp$  OA nd PM  $\perp$  OB such that OL = OM. Prove that.

(i)  $\triangle OLP \cong \triangle OMP$ (ii) PL = PM(iii)  $\angle LOP = \angle MOP$ 





#### Solution:

(i) In the figure,  $\angle L = \angle M = 90^{\circ}$ , OL = OMNow, in two right triangles  $\triangle OLP \text{ and } \triangle OMP$  OP = OP (common) OL = OM (given)  $\angle L = \angle M = 90^{\circ}$   $\therefore \triangle OLP \cong \triangle OMP$  (by RHS axiom) (ii)  $\therefore PL = PM$  (C. P. C. T) (iii) and  $\angle LOP = \angle MOP$  (C. P. C. T)

In the adjoining diagram, ∠BAC = ∠BDC and ∠ACB = ∠DBC
Prove that : AC = BO

#### Solution:

In  $\triangle ABC$  and  $\triangle BDC$ 

| $\angle BAC = \angle BDC$                | (given)                                      |
|------------------------------------------|----------------------------------------------|
| $\angle ACB = \angle DBC$                | (given)                                      |
| BC = BC                                  | (common)                                     |
| $\therefore \Delta ABC \cong \Delta DCB$ | (By AAS axiom of congruency)                 |
| $\therefore AC = BD$                     | (corresponding parts of congruent traingles) |

# B C C

5. In the given figure, we have AC  $\perp$  CD, BC  $\perp$  CD and DA = DB. Prove that CA = CB.

#### Solution:

In  $\triangle ACD$  and  $\triangle BCD$  AD = BD (given)  $\angle ACD = \angle BCD$  (each 90°) CD = CD (common)  $\therefore \triangle ACD \cong \triangle BCD$  $\therefore CA = CB$ 

- 6. In the figure given alongside prove that
  - (i) AB=FC
  - (ii) AF=BC





#### Solution:

| In $\triangle ABE$ and $\triangle DFC$   |                                              |
|------------------------------------------|----------------------------------------------|
| $\angle B = \angle F$                    | (each 90°)                                   |
| AE = DC                                  | (given)                                      |
| BE = DF                                  | (given)                                      |
| $\therefore \Delta ABE \cong \Delta CFD$ | (R. H. S congruence rule)                    |
| (i) $AB = FC$                            | (corresponding parts of congruent triangles) |
| (ii) As $AB = FC$                        |                                              |
| $\Rightarrow AF + FB = FB + BC$          |                                              |
| $\Rightarrow AF + FB - FB = BC$          |                                              |
| $\Rightarrow AF = BC$                    |                                              |

7. In the adjoining figure, AB = AC and AD = AE. Prove that:

(i) 
$$\angle ADB = \angle AEC$$
  
(ii)  $\triangle ABC \cong \triangle ACE$   
(iii)  $BE = DC$ 

#### Solution:

(i) In the given figure, AD = AE(given)  $\therefore \angle ADE = \angle AED$ Now,  $\angle ADE + \angle ADB = \angle AED + \angle AEC$ (Linear pair angles) As  $\angle ADE = \angle AED$  $\therefore \angle ADB = \angle AEC$ (ii) In  $\triangle ABD$  and  $\triangle AEC$ AB = AC, so,  $\angle B = \angle C$ AD = AE $\angle ADB = \angle AEC$  then,  $\angle BAD = \angle EAC$ (Prove above)  $\therefore \Delta ABD \cong \Delta ACE$ (SAS congruence rule) (iii) Since  $\triangle ABD \cong \triangle ACE$ BD = EC(by C. P. C. T)  $\Rightarrow$  BD + DE = EC + DE  $\Rightarrow$  BE = CD



```
(corresponding angles opposite to equal sides)
```

Head Office: 106-107-108 Lake Homes Shopping Complex, Chandivali IRB Road, Mumbai 400076 T.: 022 4120 3067 | E.: info@speedlabs.in



An Innovative Learning Methodology by IlTians.



An Innovative Learning Methodology by IlTians.

8. In the given figure;  $\angle 1 = \angle 2$  and AB = AC. Prove that:

(i)  $\angle B = \angle C$ 

- (ii) BD = DC
- (iii) AD is perpendicular to BC.

#### Solution:

In  $\triangle$ ADB and  $\triangle$ ADC,

| AB = AC                                           | (given)              |
|---------------------------------------------------|----------------------|
| $\angle 1 = \angle 2$                             | (given)              |
| AD = AD                                           | (common)             |
| $\therefore \Delta ADB \cong \Delta ADC$          | (SAS axiom)          |
| (i) Hence $\angle B = \angle C$                   | (C. P. C. T)         |
| (ii) $BD = DC$                                    | (C. P. C. T)         |
| (iii) $\angle ADB = \angle ADC$                   | (C. P. C. T)         |
| But, $\angle ADB + \angle ADC = 180^{\circ}$      | (linear pair angles) |
| $\therefore \angle ADB = \angle ADC = 90^{\circ}$ |                      |
| Hence, AD is perpendicular to BC.                 |                      |

#### 9. In the given figure prove that:

$$(\mathbf{i}) \mathbf{P} \mathbf{Q} = \mathbf{R} \mathbf{S}$$

(ii) PS = QR

#### Solution:

(i) In  $\Delta PQR$  and  $\Delta PSR$ 

| PR = PR                                  | (common)        |
|------------------------------------------|-----------------|
| $\angle PRQ = \angle RPS$                | (given)         |
| $\angle PQR = \angle PSR$                | (given)         |
| $\therefore \Delta PQR \cong \Delta RSP$ | (A. A. S axiom) |
| PQ = RS                                  | (C. P. C. T)    |
| (ii) $QR = PS$                           | (C. P. C. T)    |
| or $PS = OR$                             |                 |







0. In the former AD and BO are norman displays to DO and AD — BO prove that D is the midnaint of DO

10. In the figure, AP and BQ are perpendiculars to PQ and AP = BQ, prove that R is the midpoint of PQ

| and A |
|-------|
|       |

#### Solution:

In  $\triangle APR$  and  $\triangle BQR$ ,(Given) $\triangle P = BQ$ (Given) $\angle ARP = \angle BRQ$ (Vertically opposite angles) $\angle APR = \angle BQR$ (Each 90°) $\triangle APR \cong \triangle BQR$ (RHS Criterion) $\therefore PR = RQ$  and AR = RB(C.P.C.T)Hence R is the mid-point of AB and PQ.



11.  $\triangle$ ABC is an isosceles triangle with AB = AC. Side BA is produced to D such that AB = AD. Prove

that  $\angle BCD = 90^{\circ}$ .

#### Solution:

In  $\triangle ABC$ , AB = AC $\therefore$  ĐB =  $\angle$ C =  $\angle$ 4 ..... (i) Since, AB = AC(Given) And AB = AD(Produced)  $\therefore AD = AC$ Now, in  $\triangle ACD$ , AD = AC $\therefore \angle D = \angle C = \angle 3$ ..... (ii) Adding eqn (i) and eqn (ii), we get  $\angle B + \angle D = \angle 4 + \angle 3$  $\Rightarrow \angle B + \angle D = \angle BCD$ Now in  $\triangle$ BCD, we have  $\angle B + \angle BCD + \angle D = 180^{\circ}$  $\Rightarrow (\angle B + \angle D) + \angle BCD = 180^{\circ}$  $\Rightarrow \angle BCD + \angle BCD = 180^{\circ}$  $\Rightarrow 2 \angle BCD = 180^{\circ}$ 

$$\angle BCD = \frac{180^{\circ}}{2} = 90^{\circ}$$



 $\Delta ABX \cong \Delta ADZ$ 

BX = DZ

Assisted Practice | Expert Guidance | Personalized Insights An Innovative Learning Methodology by IlTians.

12. In  $\triangle$ ABC, if AB = AC and BE, CF are the bisectors of  $\angle$ B and  $\angle$ C respectively.

| Prove that $\Delta EBC \cong \Delta FCB$ and $BE = CF$ .                 |                         |
|--------------------------------------------------------------------------|-------------------------|
| Solution:                                                                |                         |
| Since in $\triangle ABC$ , $AB = AC \Rightarrow \angle ABC = \angle ACB$ | (i)                     |
| Since CF and BE are angle bisectors of $\angle C$ and $\angle B$ ,       |                         |
| We get $\angle ABE = \angle EBC$                                         | (ii)                    |
| And $\angle ACF = \angle FCB$                                            | (iii)                   |
| Now from equations (i), (ii) and (iii), we get                           |                         |
| $\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$                        |                         |
| $\oplus EBC = \angle FCB$                                                | (iv)                    |
| Now in $\Delta$ FBC and $\Delta$ ECB,                                    |                         |
| We have $\angle FBC = \angle ECB$                                        | $(\angle B = \angle C)$ |
| BC = BC                                                                  | (Common)                |
| $\angle FCB = \angle EBC$                                                | [From (iv)]             |
| $\Delta EBC \cong \Delta FCB$                                            |                         |
| BE = CF                                                                  | (C.P.C.T.)              |



#### 13. In the figure x is a point in the interior of square ABCD, AXYZ is also a square.

| Prove that $BX = DZ$ .                                      |                     | 20000 |
|-------------------------------------------------------------|---------------------|-------|
| Solution:                                                   |                     | 1     |
| Since ABCD and AXYZ both are squares                        |                     | 7     |
| $\angle AZY = \angle AXY$                                   |                     | ſ     |
| $= \angle AXB \dots$ (each 90°) and $AX = AZ$ and $AB = AD$ |                     |       |
| Now in $\triangle ABX$ and $\triangle ADZ$ ,                |                     |       |
| $\angle AZD = \angle AXB$                                   | (Each 90°)          |       |
| AZ = AX                                                     | (Sides of a square) |       |
| AB = AD                                                     | (Sides of a square) |       |

(C.P.C.T.)

Head Office: 106-107-108 Lake Homes Shopping Complex, Chandivali IRB Road, Mumbai 400076 T.: 022 4120 3067 | E.: info@speedlabs.in

Assisted Practice | Expert Guidance | Personalized Insights An Innovative Learning Methodology by IlTians.

#### 14. In the figure, the sides AB and BC of square ABCD are produced to P and Q respectively so that

BP = CQ. Prove that DP and AQ are perpendicular to each other.

#### Solution:

Since ABCD is a square, AB = BCAlso BP = CQ(Given) AB + BP = BC + CQAP = BQNow in  $\triangle$ APD and  $\triangle$ BQA, AP = BQ(Proved above)  $\angle ABO = \angle DAP$ (each 90°) And AB = AD $\Delta APD \cong \Delta BQA$  $\angle APD = \angle BQA$ (C.P.C.T.) And  $\angle ADP = \angle QAP$ (C.P.C.T.) Also  $\angle DAQ = \angle AQB$  $\angle DAO = \angle APO$ Now in  $\triangle AOD$  and  $\triangle AOP$ ,  $\angle ADO = \angle OAP$ , And  $\angle DAO = \angle APO$  $3rd \angle DOA = 3rd \angle AOP$  [Since, two angles of DAOD and DAOP are equal, the third angle is also equal] But  $\angle DOA + \angle AOP = 180^{\circ}$  $2 \angle DOA = 180^{\circ} \Rightarrow \angle DOA = 90^{\circ}$ DO is perpendicular to AO or DP is perpendicular to AQ.

#### 15. In the figure, $\angle B = \angle C$ and AB = AC. Prove that BD = CE.

#### Solution:

In  $\triangle ABD$  and  $\triangle ACE$ , AB = AC (Given)  $\angle B = \angle C$  (Given)  $\angle A = \angle A$  (Common)  $\triangle ABD \cong \triangle ACE$  (By ASA criterion)





BD = CE

(C.P.C.T.)

#### 16. In the figure, AD = BE, BC = DF and $\angle ABC = \angle EDF$ . Prove that AC ii EF and AC = EF

#### Solution:

Since AD = BE AD + DB = BE + DB  $\Rightarrow AB = DE$ Now in  $\triangle ABC$  and  $\triangle EDF$  AB = DE (Proved above) BC = DF (Given)  $And \angle ABC = \angle EDF$  (Given)  $\triangle ABC \cong \triangle EDF$  AC = EF (C.P.C.T.)  $And \angle BAC = \angle DEF$ But these are alternate interior angles of AC and EF with transversal AE

AC || EF

that:

17. Given ABCD is a parallelogram, BC is produced to F and BD is produced to E and AE=CF Prove

| (i) BE    DF<br>(ii) BD and EF bisect each other.         |                                   |        |
|-----------------------------------------------------------|-----------------------------------|--------|
| Solution:                                                 |                                   | 1      |
| In $\triangle ABE$ and $\triangle CDF$                    |                                   |        |
| AB = DC                                                   | (Opposite sides of parallelogram) | $\sim$ |
| AE = CF and $BE = DF$                                     | (Given)                           |        |
| $\Delta ABE \cong \Delta CDF$                             |                                   |        |
| $\angle ABE = \angle CDF(i)$                              | (C.P.C.T.)                        |        |
| Now since AB   DC and DB is a transversal                 |                                   |        |
| $\angle ABD = \angle BDC$ (ii)                            | (Alternate interior angles)       |        |
| Adding equations (i) and (ii), we get                     |                                   |        |
| $\angle ABE + \angle ABD = \angle CDF + \angle BDC$       |                                   |        |
| $\Rightarrow \angle EBD = \angle BDF \Rightarrow BE   DF$ |                                   |        |
| Now in $\triangle OBE$ and $\triangle ODF$ ,              |                                   |        |



An Innovative Learning Methodology by IlTians.

| BE = DF                       | (Given)                      |
|-------------------------------|------------------------------|
| $\angle EBO = \angle FDO$     | (Proved above)               |
| And $\angle BOE = \angle DOF$ | (Vertically opposite angles) |
| $\Delta OBE \cong \Delta ODF$ |                              |
| OE = OF and $OB = OD$         | (C.P.C.T.)                   |
|                               | _                            |

Therefore O is the mid-point of EF and DB.

#### 18. O is a point in the interior of a rhombus ABCD. If OA = OC then prove that DOB

#### is a straight line.

#### Solution:

Given: A rhombus ABCD and a point O in it such that OA = OC

To Prove: DOB is a straight line.

Construction: Join OB and OD

Proof: In  $\triangle AOD$  and  $\triangle COD$ 

A0 = C0

OD = OD

AD = CD

 $\Delta AOD \cong \Delta COD$ 

 $\angle AOD = \angle COD.....(i)$ 

Similarly  $\triangle AOB \cong \triangle COB$ 

 $\angle AOB = \angle COB.....$  (ii)

Adding eqns (i) and (ii), we get

 $\angle AOD + \angle AOB = \angle COD + \angle COB$ 

But  $\angle AOD + \angle AOB + \angle COD + \angle COB = 360^{\circ}$ 

 $\angle AOD + \angle AOB + \angle AOD + \angle AOB = 360^{\circ}$ 

 $\Rightarrow 2 (\angle AOD + \angle AOB) = 360^{\circ}$ 

 $\Rightarrow \angle AOD + \angle AOB = 180^{\circ}$  but it is a linear pair

OD and OB are in a line

Hence DOB is a straight line.

(Given) (Common) (Sides of a rhombus)

(Angles at a point)



