Class - ${ }^{\text {th }}$
Topic - Congruent Triangles

1. In the given figure, we have $\mathrm{AO}=\mathrm{BO}$ and $\mathrm{CO}=\mathrm{DO}$

Prove that:
(i) $\triangle \mathrm{AOC}=\triangle \mathrm{BOD}$
(ii) $\mathrm{AC}=\mathrm{BD}$

Solution:
(i) In $\triangle A O C$ and $\triangle B O D$
$\mathrm{AO}=\mathrm{BO}$ (given)
$\mathrm{CO}=\mathrm{DO}$
(given)
$\angle A O C=\angle B O D$
(vertically opposite angles)
$\triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}$
(S.A.S)

(ii) $\mathrm{AC}=\mathrm{BD}$
(C.P.C.T)
2. In the given figure, $A B \perp B D$ and $A B=C D$.

Prove that:
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$
(ii) $\mathbf{A B}=\mathbf{C B}$

Solution:
(i) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDB}$

$A B=C D$ (given)
$\mathrm{BD}=\mathrm{BD}$
$\angle \mathrm{ABD}=\angle \mathrm{CDB}$
(common)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$
(ii) $\mathrm{AD}=\mathrm{CB}$
(С. P.C.T)
3. In the given figure, $\mathrm{PL} \perp \mathrm{OA}$ nd $\mathrm{PM} \perp \mathrm{OB}$ such that $\mathrm{OL}=\mathrm{OM}$. Prove that.
(i) $\triangle \mathrm{OLP} \cong \triangle O M P$
(ii) $\mathbf{P L}=\mathbf{P M}$
(iii) $\angle \mathrm{LOP}=\angle \mathrm{MOP}$

Solution:

(i) In the figure, $\angle \mathrm{L}=\angle \mathrm{M}=90^{\circ}, \mathrm{OL}=0 \mathrm{M}$

Now, in two right triangles
Δ OLP and \triangle OMP
$\mathrm{OP}=\mathrm{OP} \quad$ (common)
$\mathrm{OL}=\mathrm{OM}$ (given)
$\angle \mathrm{L}=\angle \mathrm{M}=90^{\circ}$
$\therefore \triangle \mathrm{OLP} \cong \triangle \mathrm{OMP}$
(by RHS axiom)
(ii) $\therefore \mathrm{PL}=\mathrm{PM}$
(C.P.C. T)
(iii) and $\angle \mathrm{LOP}=\angle \mathrm{MOP}$
(C.P.C.T)
4. In the adjoining diagram, $\angle \mathrm{BAC}=\angle \mathrm{BDC}$ and $\angle \mathrm{ACB}=\angle \mathrm{DBC}$ Prove that: $\mathbf{A C}=\mathbf{B O}$

Solution:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$

$\angle B A C=\angle B D C \quad$ (given)
$\angle \mathrm{ACB}=\angle \mathrm{DBC} \quad$ (given)
$\mathrm{BC}=\mathrm{BC}$
(common)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{DCB} \quad$ (By AAS axiom of congruency)
$\therefore \mathrm{AC}=\mathrm{BD} \quad$ (corresponding parts of congruent traingles)
5. In the given figure, we have $A C \perp C D, B C \perp C D$ and $D A=D B$. Prove that $C A=C B$.

Solution:

In $\triangle A C D$ and $\triangle B C D$
$\mathrm{AD}=\mathrm{BD} \quad$ (given)
$\angle \mathrm{ACD}=\angle \mathrm{BCD} \quad\left(\right.$ each $\left.90^{\circ}\right)$
$\mathrm{CD}=\mathrm{CD}$
(common)
$\therefore \triangle \mathrm{ACD} \cong \triangle \mathrm{BCD}$

$\therefore \mathrm{CA}=\mathrm{CB}$
6. In the figure given alongside prove that
(i) $\mathrm{AB}=\mathrm{FC}$
(ii) $\mathrm{AF}=\mathrm{BC}$

Solution:

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{DFC}$
$\angle B=\angle F$
(each 90°)
$\mathrm{AE}=\mathrm{DC}$
(given)
$\mathrm{BE}=\mathrm{DF}$
(given)
$\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{CFD}$
(R. H. S congruence rule)
(i) $\mathrm{AB}=\mathrm{FC}$ (corresponding parts of congruent triangles)
(ii) $\mathrm{As} \mathrm{AB}=\mathrm{FC}$

$$
\begin{aligned}
& \Rightarrow \mathrm{AF}+\mathrm{FB}=\mathrm{FB}+\mathrm{BC} \\
& \Rightarrow \mathrm{AF}+\mathrm{FB}-\mathrm{FB}=\mathrm{BC} \\
& \Rightarrow \mathrm{AF}=\mathrm{BC}
\end{aligned}
$$

7. In the adjoining figure, $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{AD}=\mathrm{AE}$. Prove that:
(i) \angle ADB $=\angle$ AEC
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{ACE}$
(iii) $\mathbf{B E}=\mathrm{DC}$

Solution:

(i) In the given figure,

$$
\mathrm{AD}=\mathrm{AE}
$$

$$
\therefore \angle \mathrm{ADE}=\angle \mathrm{AED}
$$

$$
\text { Now, } \angle \mathrm{ADE}+\angle \mathrm{ADB}=\angle \mathrm{AED}+\angle \mathrm{AEC}
$$

$$
\text { As } \angle \mathrm{ADE}=\angle \mathrm{AED}
$$

$$
\therefore \angle \mathrm{ADB}=\angle \mathrm{AEC}
$$

(ii) In $\triangle A B D$ and $\triangle A E C$
$A B=A C$, so,$\angle B=\angle C$
$\mathrm{AD}=\mathrm{AE}$
$\angle \mathrm{ADB}=\angle \mathrm{AEC}$ then, $\angle \mathrm{BAD}=\angle \mathrm{EAC}$
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}$
(iii) Since $\triangle A B D \cong \triangle A C E$

$$
\begin{aligned}
& \mathrm{BD}=\mathrm{EC} \\
& \Rightarrow \mathrm{BD}+\mathrm{DE}=\mathrm{EC}+\mathrm{DE} \\
& \Rightarrow \mathrm{BE}=\mathrm{CD}
\end{aligned}
$$

(given)
(corresponding angles opposite to equal sides)
(Linear pair angles)
(Prove above)
(SAS congruence rule)
8. In the given figure; $\angle 1=\angle 2$ and $A B=A C$. Prove that:
(i) $\angle \mathrm{B}=\angle \mathrm{C}$
(ii) $B D=D C$
(iii) $A D$ is perpendicular to $B C$.

Solution:

In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,
$\mathrm{AB}=\mathrm{AC}$ (given)
$\angle 1=\angle 2$ (given)
$\mathrm{AD}=\mathrm{AD}$
(common)
$\therefore \triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
(SAS axiom)
(i) Hence $\angle \mathrm{B}=\angle \mathrm{C}$
(C.P.C.T)
(ii) $\mathrm{BD}=\mathrm{DC}$
(C.P.C. T)
(iii) $\angle \mathrm{ADB}=\angle \mathrm{ADC}$
(C.P.C.T)

But, $\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$
(linear pair angles)
$\therefore \angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
Hence, $A D$ is perpendicular to $B C$.
9. In the given figure prove that:
(i) $\mathbf{P Q}=\mathbf{R S}$
(ii) $\mathbf{P S}=\mathbf{Q R}$

Solution:

(i) In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{PSR}$
$P R=P R$ (common)
$\angle \mathrm{PRQ}=\angle \mathrm{RPS}$ (given)
$\angle \mathrm{PQR}=\angle \mathrm{PSR}$
(given)
$\therefore \triangle \mathrm{PQR} \cong \triangle \mathrm{RSP}$
(A. A. S axiom)
$P Q=R S$
(C.P.C.T)
(ii) $\mathrm{QR}=\mathrm{PS}$
(C.P.C.T)
or $\mathrm{PS}=0 \mathrm{R}$
10. In the figure, $A P$ and $B Q$ are perpendiculars to $P Q$ and $A P=B Q$ prove that R is the midpoint of $P Q$ and $A B$.

Solution:

In $\triangle A P R$ and $\triangle B Q R$,
$\mathrm{AP}=\mathrm{BQ}$
$\angle A R P=\angle B R Q$
$\angle A P R=\angle B Q R$
$\Delta \mathrm{APR} \cong \triangle \mathrm{BQR}$
$\therefore \mathrm{PR}=\mathrm{RQ}$ and $\mathrm{AR}=\mathrm{RB}$
(Given)
(Vertically opposite angles)
(Each 90°)
(RHS Criterion)

Hence R is the mid-point of $A B$ and $P Q$.
11. $\triangle A B C$ is an isosceles triangle with $A B=A C$. Side $B A$ is produced to D such that $A B=A D$. Prove that $\angle B C D=90^{\circ}$.

Solution:

In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
\therefore ĐB $=\angle \mathrm{C}=\angle 4$
Since, $\mathrm{AB}=\mathrm{AC}$

And $A B=A D$
$\therefore \mathrm{AD}=\mathrm{AC}$
Now, in $\triangle A C D, A D=A C$
$\therefore \angle \mathrm{D}=\angle \mathrm{C}=\angle 3$
Adding eqn (i) and eqn (ii), we get
$\angle \mathrm{B}+\angle \mathrm{D}=\angle 4+\angle 3$
$\Rightarrow \angle \mathrm{B}+\angle \mathrm{D}=\angle \mathrm{BCD}$
Now in $\triangle B C D$, we have
$\angle B+\angle B C D+\angle D=180^{\circ}$
$\Rightarrow(\angle \mathrm{B}+\angle \mathrm{D})+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{BCD}=180^{\circ}$
$\angle \mathrm{BCD}=\frac{180^{\circ}}{2}=90^{\circ}$
12. In $\triangle A B C$, if $A B=A C$ and $B E, C F$ are the bisectors of $\angle B$ and $\angle C$ respectively.

Prove that $\triangle \mathrm{EBC} \cong \triangle \mathrm{FCB}$ and $\mathrm{BE}=\mathrm{CF}$.

Solution:

Since in $\triangle A B C, A B=A C \Rightarrow \angle A B C=\angle A C B$

Since $C F$ and $B E$ are angle bisectors of $\angle C$ and $\angle B$,
We get $\angle \mathrm{ABE}=\angle \mathrm{EBC}$
And $\angle \mathrm{ACF}=\angle \mathrm{FCB}$
Now from equations (i), (ii) and (iii), we get

$$
\begin{align*}
& \frac{1}{2} \angle \mathrm{ABC}=\frac{1}{2} \angle \mathrm{ACB} \\
& \mathrm{ĐEBC}=\angle \mathrm{FCB} \tag{iv}
\end{align*}
$$

Now in $\triangle \mathrm{FBC}$ and $\triangle \mathrm{ECB}$,
We have $\angle \mathrm{FBC}=\angle \mathrm{ECB}$ $(\angle B=\angle C)$
$B C=B C$
(Common)
$\angle \mathrm{FCB}=\angle \mathrm{EBC}$
[From (iv)]
$\Delta \mathrm{EBC} \cong \triangle \mathrm{FCB}$
$B E=C F$
13. In the figure x is a point in the interior of square $A B C D, A X Y Z$ is also a square.

Prove that $\mathrm{BX}=\mathrm{DZ}$.
Solution:
Since ABCD and AXYZ both are squares

$$
\angle A Z Y=\angle A X Y
$$

$=\angle A X B . . .\left(\right.$ each $\left.90^{\circ}\right)$ and $A X=A Z$ and $A B=A D$

Now in $\triangle A B X$ and $\triangle A D Z$,
$\angle A Z D=\angle A X B$
$A Z=A X$
$\mathrm{AB}=\mathrm{AD}$
$\Delta \mathrm{ABX} \cong \Delta \mathrm{ADZ}$
$B X=D Z$
(Each 90°)
(Sides of a square)
(Sides of a square)
(C.P.C.T.)
14. In the figure, the sides $A B$ and $B C$ of square $A B C D$ are produced to P and Q respectively so that $B P=C Q$. Prove that $D P$ and $A Q$ are perpendicular to each other.

Solution:

Since $A B C D$ is a square, $A B=B C$
Also $B P=C Q$ (Given)
$A B+B P=B C+C Q$
$\mathrm{AP}=\mathrm{BQ}$
Now in $\triangle A P D$ and $\triangle B Q A$,
$\mathrm{AP}=\mathrm{BQ}$
$\angle A B Q=\angle D A P$
And $A B=A D$
$\triangle \mathrm{APD} \cong \triangle \mathrm{BQA}$
$\angle \mathrm{APD}=\angle \mathrm{BQA}$
And $\angle \mathrm{ADP}=\angle \mathrm{QAP}$
Also $\angle \mathrm{DAQ}=\angle \mathrm{AQB}$
$\angle \mathrm{DAO}=\angle \mathrm{APO}$
Now in $\triangle A O D$ and $\triangle A O P$,

$$
\angle A D O=\angle O A P,
$$

And $\angle \mathrm{DAO}=\angle \mathrm{APO}$
3rd $\angle \mathrm{DOA}=3 \mathrm{rd} \angle \mathrm{AOP}$ [Since, two angles of DAOD and DAOP are equal, the third angle is also equal]
But $\angle \mathrm{DOA}+\angle \mathrm{AOP}=180^{\circ}$
$2 \angle \mathrm{DOA}=180^{\circ} \Rightarrow \angle \mathrm{DOA}=90^{\circ}$
DO is perpendicular to $A O$ or $D P$ is perpendicular to $A Q$.
15. In the figure, $\angle B=\angle C$ and $A B=A C$. Prove that $B D=C E$.

Solution:

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACE}$,
$\mathrm{AB}=\mathrm{AC}$
(Given)
$\angle \mathrm{B}=\angle \mathrm{C}$
(Given)
$\angle \mathrm{A}=\angle \mathrm{A}$
(Common)
$\Delta \mathrm{ABD} \cong \triangle \mathrm{ACE}$
(By ASA criterion)

16. In the figure, $\mathrm{AD}=\mathrm{BE}, \mathrm{BC}=\mathrm{DF}$ and $\angle \mathrm{ABC}=\angle \mathrm{EDF}$. Prove that AC ii EF and $\mathrm{AC}=\mathrm{EF}$

Solution:

Since $A D=B E$
$A D+D B=B E+D B$
$\Rightarrow \mathrm{AB}=\mathrm{DE}$
Now in $\triangle A B C$ and $\triangle E D F$
$\mathrm{AB}=\mathrm{DE}$ (Proved above)

$\mathrm{BC}=\mathrm{DF}$ (Given)

And $\angle \mathrm{ABC}=\angle \mathrm{EDF}$ (Given)
$\Delta \mathrm{ABC} \cong \Delta \mathrm{EDF}$
$\mathrm{AC}=\mathrm{EF}$
And $\angle \mathrm{BAC}=\angle \mathrm{DEF}$
But these are alternate interior angles of AC and EF with transversal AE
AC || EF
17. Given $A B C D$ is a parallelogram, $B C$ is produced to F and $B D$ is produced to E and $A E=C F$ Prove that:
(i) $\mathrm{BE}|\mid \mathrm{DF}$
(ii) BD and EF bisect each other.

Solution:

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CDF}$
$\mathrm{AB}=\mathrm{DC}$
(Opposite sides of parallelogram

$\mathrm{AE}=\mathrm{CF}$ and $\mathrm{BE}=\mathrm{DF}$
$\Delta \mathrm{ABE} \cong \triangle \mathrm{CDF}$
$\angle \mathrm{ABE}=\angle \mathrm{CDF}$
(C.P.C.T.)

Now since $\mathrm{AB} \| \mathrm{DC}$ and DB is a transversal
$\angle \mathrm{ABD}=\angle \mathrm{BDC}$
(Alternate interior angles)
Adding equations (i) and (ii), we get

$$
\begin{aligned}
& \angle \mathrm{ABE}+\angle \mathrm{ABD}=\angle \mathrm{CDF}+\angle \mathrm{BDC} \\
& \Rightarrow \angle \mathrm{EBD}=\angle \mathrm{BDF} \Rightarrow \mathrm{BE} \| \mathrm{DF}
\end{aligned}
$$

Now in \triangle OBE and $\triangle O D F$,
$\mathrm{BE}=\mathrm{DF}$
$\angle \mathrm{EBO}=\angle \mathrm{FDO}$
And $\angle \mathrm{BOE}=\angle \mathrm{DOF}$
$\Delta \mathrm{OBE} \cong \triangle \mathrm{ODF}$
$O E=O F$ and $O B=O D$
(Given)
(Proved above)
(Vertically opposite angles)

Therefore 0 is the mid-point of EF and DB.
18. O is a point in the interior of a rhombus $A B C D$. If $O A=O C$ then prove that $D O B$ is a straight line.

Solution:

Given: A rhombus ABCD and a point O in it such that $\mathrm{OA}=\mathrm{OC}$
To Prove: DOB is a straight line.
Construction: Join OB and OD
Proof: In $\triangle A O D$ and $\triangle C O D$

$\mathrm{AO}=\mathrm{CO}$
$O D=O D$
$A D=C D$
$\triangle \mathrm{AOD} \cong \triangle \mathrm{COD}$
$\angle A O D=\angle C O D$.
Similarly $\triangle \mathrm{AOB} \cong \triangle \mathrm{COB}$
$\angle A O B=\angle C O B$.. \qquad
Adding eqns (i) and (ii), we get
(Given)
(Common)
(Sides of a rhombus)
$\angle A O D+\angle A O B=\angle C O D+\angle C O B$
But $\angle \mathrm{AOD}+\angle \mathrm{AOB}+\angle \mathrm{COD}+\angle \mathrm{COB}=360^{\circ} \quad$ (Angles at a point)
$\angle \mathrm{AOD}+\angle \mathrm{AOB}+\angle \mathrm{AOD}+\angle \mathrm{AOB}=360^{\circ}$
$\Rightarrow 2(\angle \mathrm{AOD}+\angle \mathrm{AOB})=360^{\circ}$
$\Rightarrow \angle \mathrm{AOD}+\angle \mathrm{AOB}=180^{\circ}$ but it is a linear pair
$O D$ and $O B$ are in a line
Hence DOB is a straight line.

