1. $A(-3,2), B(-5,-5), C(2,-3)$ and $D(4,4)$ are the four points in a plane. Show that ABCD is a rhombus but not a square.

Solution

$$
\begin{aligned}
& \text { The given points are } \mathrm{A}(-3,2), \mathrm{B}(-5,-5), \mathrm{C}(2,-3) \text { and } \\
& \mathrm{D}(4,4) \text {. } \\
\mathrm{AB}= & \sqrt{[-5-(-3)]^{2}+(-5-2)^{2}} \\
= & \sqrt{(-5+3)^{2}+(-7)^{2}} \\
= & \sqrt{(-2)^{2}+(-7)^{2}} \\
= & \sqrt{4+49} \\
= & \sqrt{53} \text { units } \\
\mathrm{BC}= & \sqrt{[2-(-5)]^{2}+[-3-(-5)]^{2}}=\sqrt{(2+5)^{2}+(-3+5)^{2}} \\
= & \sqrt{7^{2}+2^{2}}=\sqrt{49+4}=\sqrt{53} \text { units } \\
\mathrm{CD}= & \sqrt{(4-2)^{2}+\left[4-(-3]^{2}\right.}=\sqrt{2^{2}+(4+3)^{2}} \\
= & \sqrt{2^{2}+7^{2}}=\sqrt{4+49}=\sqrt{53} \text { units } \\
\mathrm{DA}= & \sqrt{(-3-4)^{2}+(2-4)^{2}} \\
= & \sqrt{(7)^{2}+(-2)^{2}}=\sqrt{49+4}=\sqrt{53} \text { units }
\end{aligned}
$$

Solution
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$.
$\therefore A B C D$ is either a rhombus or a square.

$$
\begin{aligned}
\text { Diag. } \begin{aligned}
\mathrm{AC} & =\sqrt{[2-(-3)]^{2}+(-3-2)^{2}} \\
& =\sqrt{(2+3)^{2}+(-5)^{2}} \\
& =\sqrt{5^{2}+5^{2}}=\sqrt{25+25}=\sqrt{50}=5 \sqrt{2} \text { units. } \\
\text { Diag. } \mathrm{BD} & =\sqrt{(2+3)^{2}+(-5)^{2}}
\end{aligned} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{[4-(-5)]^{2}+[4-(-5)]^{2}} \\
& =\sqrt{(4+5)^{2}+(4+5)^{2}} \\
& =\sqrt{9^{2}+9^{2}}=\sqrt{81+81} \\
& =\sqrt{162}=9 \sqrt{2} \text { units }
\end{aligned}
$$

\therefore Diag. $A C \neq$ Diag. $B D$
$\therefore \mathrm{ABCD}$ is a rhombus but not a square. Proved
2. Find the co-ordinates of the circumcenter of $\Delta \mathrm{ABC}$ with vertices ar $\mathrm{A}(3,0), \mathrm{B}(-1,-6)$ and $C(4,-1)$. Also, find its circum-radius.

Solution The vertices of the given triangle are
$\mathrm{A}(3,0), \mathrm{B}(-1,-6)$ and $\mathrm{C}(4,-1)$.
Let $\mathrm{O}(x, y)$ be the circumcentre of $\triangle \mathrm{ABC}$.
Then,

$$
\begin{align*}
& \mathrm{OA}=\mathrm{OB} \\
&=\mathrm{OC} \\
& \Rightarrow \mathrm{OA}^{2}=\mathrm{OB}^{2} \\
&=\mathrm{OC}^{2} \\
& \mathrm{Now}_{3} \mathrm{OA}^{2}=\mathrm{OB}^{2} \\
& \Rightarrow(x-3)^{2}+(y-0)^{2}=[x-(-1)]^{2}+[y-(-6)]^{2} \\
& \Rightarrow \quad(x-3)^{2}+y^{2}=(x+1) 2+(y+6)^{2} \\
& \Rightarrow x^{2}+y^{2}-6 x+9=x^{2}+y^{2}+2 x+12 y+37 \\
& \Rightarrow 8 x+12 y+28=0 \\
& \Rightarrow \\
& \text { And, } \mathrm{OB}^{2}=\mathrm{OC}^{2} \\
& \Rightarrow {[x-(-1)]^{2}+[\mathrm{y}-(-6)]^{2}=(x-4)^{2}+[y-(-1)]^{2} } \\
& \Rightarrow(x+1)^{2}+(y+6)^{2}=(x-4)^{2}+(y+1)^{2} \\
& \Rightarrow x^{2}+y^{2}+2 x+12 y+37=x^{2}+y^{2}-8 x+2 y+17 \\
& \Rightarrow 10 x+10 y+20=0 \\
& \Rightarrow x+y=-2 \quad \quad-\quad \text { (ii) } \tag{ii}
\end{align*}
$$

Solving (i) and (ii), we get $x=1$ and $y=-3$.
\therefore The circumcentre of $\triangle \mathrm{ABC}$ is $\mathrm{O}(1,-3)$.
Circum-radius $=\mathrm{OA}=\sqrt{(1-3)^{2}+(-3-0)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-2)^{2}+(-3)^{2}} \\
& =\sqrt{4+9} \sqrt{13} \\
& =\sqrt{13} \text { units. }
\end{aligned}
$$

3. $K M$ is a straight line of 13 units. If K has the co-ordinates $(2,5)$ and M has the co-ordinates ($x,-7$), find the possible values of x .

Solution

$$
\text { We have, } \quad \mathrm{KM}^{2}=(x-2)^{2}+(-7-5)^{2}
$$

$$
\Rightarrow \quad \mathrm{KM}^{2}=x^{2}+4-4 x+144
$$

$$
\Rightarrow \quad \mathrm{KM}^{2}=x^{2}-4 x+148
$$

$$
\text { But } \quad \mathrm{KM}=13 \text { (given) }
$$

$$
\Rightarrow \quad K^{2}=169
$$

\therefore From (i) and (ii), we get

$$
169=x^{2}-4 x+148
$$

$\Rightarrow \quad x^{2}-4 x-21=0$
$\Rightarrow x^{2}-7 x+3 x-21=0$
$\Rightarrow x(x-7)+3(x-7)=0$
$\Rightarrow \quad(x-7)(x+3)=0$
$\Rightarrow \quad x=7$ or $x=-3$
Hence, the possible values of x are 7 and -3 .
4. Find the co-ordinates of the centre of a circle which passes through the points $\mathrm{A}(0,0)$, B $(-3,3)$ and $C(5,-1)$. Also, find the radius of the circle.

Solution
Let $\mathrm{P}(x, y)$ be the centre of the circle passing through the points A $(0,0), B(-3,3)$ and $C(5,-1$
Then, $\quad \mathrm{PA}=\mathrm{PB}$
$\begin{aligned} & =\mathrm{PC} \\ \Rightarrow \quad \mathrm{PA}^{2} & =\mathrm{PB}^{2}\end{aligned}$

$$
=\mathrm{PC}^{2}
$$

Now, $\quad \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\Rightarrow(x-0)^{2}+(y-0)^{2}=(x+3)^{2}+(y-3)^{2}$
$\Rightarrow x^{2}+y^{2}=x^{2}+9+6 x+y^{2}+9-6 y$

$\Rightarrow 6 x-6 y=-18$
$\Rightarrow x-y=-3$
And, $\mathrm{PB}^{2}=\mathrm{PC}^{2}$
$\Rightarrow(x+3)^{2}+(y-3)^{2}=(i-5)^{2}+(y+1)^{2}$
$\Rightarrow x^{2}+9+6 x+y^{2}+9-6 y=x^{2}+25-10 x+y^{2}+1+2 y$
$\Rightarrow \quad 16 x-8 y=8$
$\Rightarrow \quad 2 x-y=1$
Subtracting (ii) from (i), we get

$$
\begin{equation*}
-x=-4 \Rightarrow x=4 \tag{ii}
\end{equation*}
$$

Substituting $x=4$ in (i), we get

$$
4-y=-3 \Rightarrow y=7
$$

Hence, centre of the circle is $\mathrm{P}(4,7)$.
Radius of the circle $=\mathrm{PA}$

$$
\begin{aligned}
& =\sqrt{(4-0)^{2}+(7-0)^{2}} \\
& =\sqrt{16+49}=\sqrt{65} \text { units. }
\end{aligned}
$$

5. The centre of a circle is $C(-1,6)$ and one end of a diameter is $A(5,9)$. Find the co-ordinates of the other end.

Solution
Let the other end of the diameter of the circle be
$B(x, y)$ whose one end is the point $A(5,9)$.
\therefore The mid-point of $A B$ is .
$\left[\frac{5+x}{2}, \frac{9+y}{2}\right]$
The centre of the circle is $\mathrm{C}(-1,6)$.
Since the centre of the circle is the mid-point of $A B$.

$$
\frac{5+x}{}=-1 \text { and } \frac{9+y}{}=6
$$

Head Office: 106-107-108 Lake Homes Shoppihg Complex, Chandivali IRB Road, Mumbai 400076 T.: 02241203067 |E.: info@speedlabs.in

$$
\begin{aligned}
\Rightarrow & 5+x & =-2 & \text { and } \quad 9+y=12 \\
\Rightarrow & x & =-7 & \text { and } v=3
\end{aligned}
$$

6. Find the distance between the following pairs of points.
(i) $\quad \mathrm{A}(-2,5)$ and $\mathrm{B}(3,-7)$
(ii) $\mathrm{A}(4,5)$ and $\mathrm{B}(-3,2)$
(iii) $\mathrm{A}(-4,-4)$ and $\mathrm{B}(3,5)$

Solution

(i) Using the distance formula $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ we get

$$
\begin{aligned}
& A B=\sqrt{(3-(-2))^{2}+(-7-5)^{2}} \\
& =\sqrt{5^{2}+12^{2}}=\sqrt{25+44}=\sqrt{169}=13 \text { units }
\end{aligned}
$$

(ii) Using the distance formula $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ we get $\mathrm{AB}=\sqrt{(-3-4)^{2}+(2-5)^{2}}=\sqrt{(-7)^{2}+(-3)^{2}}=\sqrt{49+9}=\sqrt{58}$ units
(iii) We have $\mathrm{AB}=\sqrt{(3-(-4))^{2}+(5-(-4))^{2}}=\sqrt{7^{2}+9^{2}}=\sqrt{49+81}=$ $\sqrt{130}$ units
7. By using the distance formula, prove that each of the following sets of points are vertices of a right triangle:
(i) $\quad(4,4),(3,5),(-1,-1)$
(ii) $\quad(12,8),(-2,6),(6,0)$

Solution
(i) Let the points $(4,4),(3,5),(-1,-1)$ represent the points A, B and C , respectively. Then, $\mathrm{AB}^{2}=(3-4)^{2}+(5-4)^{2}=1^{2}+1^{2}=2$
$\mathrm{BC}^{2}=(-1-3)^{2}+(-1-5)^{2}=(-4)^{2}+(-6)^{2}=52$
and $\mathrm{CA}^{2}=(4-(-1))^{2}+(4-(-1))^{2}=5^{2}+5^{2}=50$
Since $B C^{2}=A B^{2}+C A^{2}$, it follows from the converse of the Pythagorean
Theorem that the triangle ABC is a right triangle, with right angle at A .
(ii) Let the points $(12,8),(-2$, and 6$),(6,0)$ represent the points A, B and C, respectively. Then $\mathrm{AB}^{2}=(-2-12)^{2}+(6-8)^{2}=(-14)^{2}+(-2)^{2}=200$
$\mathrm{BC}^{2}=(6-(-2))^{2}+(0-6)^{2}=8^{2}+(-6)^{2}=100$
and $C A^{2}=(12-6)^{2}+(8-0)^{2}=6^{2}+(8)^{2}=100$
Since $A B^{2}=B C^{2}+C A^{2}$, it follows the converse of the Pythagorean Theorem in which the triangle $A B C$ is a right triangle with right angle at C.
8. Show that the triangle with vertices $(4,3),(7,-1)$ and $(9,3)$ is an isosceles triangle.

Solution

Let the points $(4,3),(7,-1),(9,3)$ represent the points A, B and C, respectively.
Then, $\mathrm{AB}^{2}=(7-4)^{2}+(-1-3)^{2}=3^{2}+(-4)^{2}=25$,
$\mathrm{BC}^{2}=(9-7)^{2}+(3-(-1))^{2}=2^{2}+4^{2}=20$,
and $\mathrm{CA}^{2}=(9-4)^{2}+(3-3)^{2}=5^{2}+0^{2}=25$
Since $A B^{2}=C A^{2}$, we get $A B=C A$.
Therefore, the triangle ABC is an isosceles triangle.
9. Show that the triangle with vertices $(a, a),(-a,-a)$ and $(-a \sqrt{3}, a \sqrt{3})$ is an equilateral triangle.

Solution

Let the points $(a, a),(-a,-a)$ and $(-a \sqrt{3}, a \sqrt{3})$ represent the points A, B and C, respectively.
Then $\mathrm{AB}^{2}=(-a-a)^{2}+(-a-a)^{2}$
$=(-2 a)^{2}+(-2 a)^{2}=4 a^{2}+4 a^{2}=8 a^{2}$,
$B C^{2}=(-a \sqrt{3}-(-a))^{2}+(a \sqrt{3}-(-a))^{2}$
$=(-a \sqrt{3}+a)^{2}+(a \sqrt{3}+a)^{2}$
$=2\left\{(-a \sqrt{3})^{2}+a^{2}\right\} \quad\left[\because(a-b)^{2}+(a+b)^{2}=2\left(a^{2}+b^{2}\right)\right]$
$=2\left(3 a^{2}+a^{2}\right)=8 a^{2}$
and $\mathrm{CA}^{2}=(\mathrm{a}-(-\mathrm{a} \sqrt{3}))^{2}+(\mathrm{a}-\mathrm{a} \sqrt{3})^{2}=(\mathrm{a}+\mathrm{a} \sqrt{3})^{2}+(\mathrm{a}-\mathrm{a} \sqrt{3})^{2}$
$=2\left\{a^{2}+(a \sqrt{3})^{2}\right\} \quad\left[\therefore(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right)\right]$
$=2\left(a^{2}+3 a^{2}\right)=8 a^{2}$.
Since, $A B^{2}=B C^{2}=C A^{2}$, we get $A B=B C=C A$.
Thus, the triangle $A B C$ is an equilateral triangle.
10. Find the value of x such that $A B=B C$, where A, B and C are $(6,-1),(1,3)$ and $(x, 8)$, respectively.

Solution

$$
\begin{aligned}
& \mathrm{A}(6,-1), \mathrm{B}(1,3) \text { and } \mathrm{C}(\mathrm{x}, 8) \text { such that } \mathrm{AB}=\mathrm{BC} \text {. } \\
& \text { We have } \mathrm{AB}^{2}=(1-6)^{2}+(3-(-1))^{2}=(-5)^{2}+4^{2}=41 \text {. } \\
& \text { and } \mathrm{BC}^{2}=(\mathrm{x}-1)^{2}+(8-3)^{2}=(\mathrm{x}-1)^{2}+25 \\
& \text { Since } \mathrm{AB}=\mathrm{BC} \text {, we have } \mathrm{AB}^{2}=\mathrm{BC}^{2} \\
& \Rightarrow(\mathrm{x}-1)^{2}+25=41 \\
& \Rightarrow(\mathrm{x}-1)^{2}=16 \\
& \Rightarrow \mathrm{x}-1= \pm 4 \\
& \Rightarrow \mathrm{x}=1 \pm 4 \\
& \text { Therefore }, \mathrm{x}=5,-3
\end{aligned}
$$

11. Which point on the x -axis is equidistant from $(7,6)$ and $(-3,4)$.

Solution

Let us take $(7,6)$ and $(-3,4)$ to be points A and B respectively. Let $\mathrm{C}(x, 0)$ on x -axis be the point which is equidistant from A and B , that is $\mathrm{AC}=\mathrm{BC}$. This implies

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{BC}^{2} \\
& \Rightarrow(x-7)^{2}+(0-6)^{2}=(x-(-3))^{2}+(0-4)^{2} \\
& \Rightarrow x^{2}-14 x+49+36=x^{2}+6 x+9+16 \\
& \Rightarrow-14 x+85=6 x+25 \\
& \Rightarrow 60=20 x \\
& \Rightarrow x=3 .
\end{aligned}
$$

Thus, the required point is $(3,0)$.
12. An equilateral triangle has one vertex at the point $(3,4)$ and another at $(-2,3)$. Find the coordinates of the third vertex.

Solution

Let us take the two given vertices to be $A(3,4)$ and $B(-2,3)$. Let the third vertex of the equilateral triangle be $C(x, y)$. Then $A B=B C=C A$. This implies $A B^{2}=B C^{2} C A^{2}$.

Since $B C^{2}=C A^{2}$, we get

$$
\begin{align*}
& (x+2)^{2}+(y-3)^{2}=(x-3)^{2}+(y-4)^{2} \\
& x^{2}+4 x+4+y^{2}-6 y+9=x^{2}-6 x+9+y^{2}-8 y+16 \\
& 10 x+2 y-12=0 \\
& 5 x+y-6=0 \tag{1}
\end{align*}
$$

Next, since $A B^{2}=B C^{2}$, we get
$(-2-3)^{2}+(3-4)^{2}=(x+2)^{2}+(y-3)^{2}$
$\Rightarrow 25+(-1)^{2}=(x+2)^{2}+(y-3)^{2}$
$\Rightarrow 26=(x+2)^{2}+(y-3)^{2}$
From (1) we have $y=6-5 x$. Putting this in (2), we get
$(x+2)^{2}+(6-5 x-3)^{2}=26$
$(x+2)^{2}+(3-5 x)^{2}=26$
$\mathrm{x}^{2}+4 \mathrm{x}+4+9-30 \mathrm{x}+25 \mathrm{x}^{2}=26$
$\Rightarrow 26 \mathrm{x}^{2}-26 \mathrm{x}-13=0 \Rightarrow 2 \mathrm{x}^{2}-2 \mathrm{x}-1=0$
$\Rightarrow \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}=\frac{2 \pm \sqrt{4-4(2)(-1)}}{2(2)}$
$=\frac{2 \pm \sqrt{12}}{4}=\frac{2 \pm 2 \sqrt{3}}{4}=\frac{1 \pm \sqrt{3}}{2}$
When $\mathrm{x}=\frac{1+\sqrt{3}}{2}, \mathrm{y}=6-5\left(\frac{1+\sqrt{3}}{2}\right)=\frac{12-5-5 \sqrt{3}}{2}=\frac{1}{2}(7-5 \sqrt{3})$
When $\mathrm{x}=\frac{1-\sqrt{3}}{2}, \mathrm{y}=6-5\left(\frac{1-\sqrt{3}}{2}\right)=\frac{12-5+5 \sqrt{3}}{2}=\frac{1}{2}(7+5 \sqrt{3})$
Therefore, the coordinates of C are

$$
\left(\frac{1}{2}(1+\sqrt{3}), \frac{1}{2}(7-5 \sqrt{3})\right) \text { or }\left(\frac{1}{2}(1-\sqrt{3}), \frac{1}{2}(7+5 \sqrt{3})\right)
$$

13. Find the abscissa of points whose ordinate is 4 and which are at a distance of 5 from $(5,0)$.

Solution

Let the abscissa of the required point be x. Then $A(x, 4)$ is at a distance of 5 from $\mathrm{B}(5,0)$. That is $\mathrm{AB}=$
$\Rightarrow \mathrm{AB}^{2}=5^{2}$
$\Rightarrow(\mathrm{x}-5)^{2}+(4-0)^{2}=25$
$\Rightarrow(\mathrm{x}-5)^{2}=25-16=9$
$\Rightarrow \mathrm{x}-5= \pm 3$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=5 \pm 3 \\
& \Rightarrow \mathrm{x}=2 \text { or } 8 .
\end{aligned}
$$

14. Find the relation that must exist between x and y, so that $C(x, y)$ is equidistant from A $(6,-1)$ and $B(2,3)$.

Solution

$$
\begin{aligned}
& \text { Since } C A=C B \text {, we have } C A^{2}=C B^{2} \\
& \Rightarrow(x-6)^{2}+(y+1)^{2}=(x-2)^{2}+(y-3)^{2} \\
& \Rightarrow(x-6)^{2}-(x-2)^{2}=(y-3)^{2}-(y+1)^{2} \\
& \Rightarrow(x-6+x-2)(x-6-x+2)=(y-3+y+1)(y-3-y-1) \\
& \Rightarrow(2 x-8)(-4)=(2 y-2)(-4) \\
& \Rightarrow 2 x-8=2 y-2 \\
& x-4=y-1 \text { or } x-y=3 \text { is the relation between } x \text { and } y .
\end{aligned}
$$

15. Find the circumcenter of the triangle whose angular points are $A(4,3), B(-2,3)$ and C $(6,-1)$.

Solution

A $(4,3), B(-2,3)$ and $C(6,-1)$ are the vertices of the triangle ABC.
Let $D(x, y)$ be the circumcenter of the triangle $A B C$. By definition
$\mathrm{DA}=\mathrm{DB}=\mathrm{DC} \Rightarrow \mathrm{DA}^{2}=\mathrm{DB}^{2}=\mathrm{DC}^{2}$
$\Rightarrow(x-4)^{2}+(y-3)^{2}=(x+2)^{2}+(y-3)^{2}$

$$
\begin{equation*}
=(x-6)^{2}+(y+1)^{2} \tag{1}
\end{equation*}
$$

The first two relations give us

$$
(x-4)^{2}=(x+2)^{2} \Rightarrow x-4= \pm(x+2)
$$

But $x-4=x+2$ leads to the absurd relation $-4=2$, and $\mathrm{x}-4=-(\mathrm{x}+2)$
gives us $2 \mathrm{x}=2$ or $\mathrm{x}=1$.
From the last two relations in (1), we get
$(x+2)^{2}+(y-3)^{2}=(x-6)^{2}+(y+1)^{2}$
$\Rightarrow(1+2)^{2}-(1-6)^{2}=(y+1)^{2}-(y-3)^{2}[\therefore x=1]$
$\Rightarrow 9-25=(y+1+y-3)(y+1-y+3)$
$\Rightarrow-16=(2 y-2)(4)=8 y-8$
$-8=8 y$ or $\mathrm{y}=-1$.
Thus, the required circumcenter is $(1,-1)$

