1. Is it possible to have a triangle with the following sides?
(i) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
(iii) $6 \mathrm{~cm}, 3 \mathrm{~cm}, 2 \mathrm{~cm}$

Solution:
We know that the sum of the length of any two sides of a triangle is greater than the length of the third side.
(i) $2 \mathrm{~cm}+3 \mathrm{~cm}=5 \mathrm{~cm}=5 \mathrm{~cm}$
$3 \mathrm{~cm}+5 \mathrm{~cm}=8 \mathrm{~cm}>2 \mathrm{~cm}$
Hence, it is not possible to have a triangle.
(ii) $3 \mathrm{~cm}+6 \mathrm{~cm}=9 \mathrm{~cm}>7 \mathrm{~cm}$
$3 \mathrm{~cm}+7 \mathrm{~cm}=10 \mathrm{~cm}>6 \mathrm{~cm}$
$6 \mathrm{~cm}+7 \mathrm{~cm}=13 \mathrm{~cm}>3 \mathrm{~cm}$
(iii) $6 \mathrm{~cm}+3 \mathrm{~cm}=9 \mathrm{~cm}>2 \mathrm{~cm}$
$6 \mathrm{~cm}+2 \mathrm{~cm}=8 \mathrm{~cm}>3 \mathrm{~cm}$
$2 \mathrm{~cm}+3 \mathrm{~cm}=5 \mathrm{~cm}<6 \mathrm{~cm}$
Hence, it is not possible to have a triangle.
2. Take any point O in the interior of a triangle $P Q R$. Is
(i) $\mathbf{O P}+\mathbf{O Q}>\mathbf{P Q}$?
(ii) $\mathbf{O Q}+\mathbf{O R}>\mathbf{Q R}$?
(iii) $\mathbf{O R}+\mathbf{O P}>\mathbf{R P}$?

Solution:

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
(i) In $\triangle O P Q$, yes, $O P+O Q>P Q$
(ii) In $\triangle O R Q$, yes, $O R+O Q>Q R$
(iii) In $\triangle P O R$, yes, $O R+O P>P R$

3. AM is a median of a triangle ABC . Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AM}$? (Consider the sides of triangles $\triangle \mathrm{ABM}$ and $\triangle \mathrm{AMC}$).

Solution:

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
In $\triangle \mathrm{AMB}$,
$\mathrm{AB}+\mathrm{BM}>\mathrm{AM}$
In $\triangle \mathrm{AMC}$
$\mathrm{AC}+\mathrm{CM}>\mathrm{AM}$
Adding (i) and (ii), we have
$\mathrm{AB}+\mathrm{BM}+\mathrm{AC}+\mathrm{CM}>\mathrm{AM}+\mathrm{AM}$
or $\mathrm{AB}+\mathrm{AC}+(\mathrm{BM}+\mathrm{CM})>2 \mathrm{AM}$
or $\mathrm{AB}+\mathrm{AC}+\mathrm{BC}>2 \mathrm{AM}$
or $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AM}$
4. ABCD is a quadrilateral. Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}$?

Solution:

Given: In a quadrilateral $\mathrm{ABCD}, \mathrm{AC}$ and BD are diagonals.
To prove: $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}$
Proof: In $\triangle A B D$,

$$
\begin{equation*}
\mathrm{AB}+\mathrm{DA}>\mathrm{BD} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{BDC}$,
$\mathrm{BC}+\mathrm{CD}>\mathrm{BD}$
In $\triangle \mathrm{ADC}$,
$\mathrm{DA}+\mathrm{CD}>\mathrm{AC}$
In $\triangle A B C$,
$\mathrm{AB}+\mathrm{BC}>\mathrm{AC}$
Adding (i), (ii), (iii) and (iv), we have
$\mathrm{AB}+\mathrm{DA}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}+\mathrm{CD}+\mathrm{AB}+\mathrm{BC}>\mathrm{BD}+\mathrm{AC}+\mathrm{AC}+\mathrm{BD}$
or $2[\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}]>2[\mathrm{BD}+\mathrm{AC}]$
or $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{BD}+\mathrm{AC}$
5. ABCD is a quadrilateral. Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{AC}+\mathrm{BD})$?

Solution:

Given: A quadrilateral ABCD in which AC and BD are diagonals.
To prove: $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{AC}+\mathrm{BD})$

MATHEMATICS

Proof: In $\triangle \mathrm{AOB}$,
$\mathrm{OB}+\mathrm{OA}>\mathrm{AB}$
In $\triangle B O C$,
$\mathrm{OB}+\mathrm{OC}>\mathrm{BC}$
In \triangle COD,
OD + OC $>C D$
In $\triangle \mathrm{AOD}$,
$\mathrm{OA}+\mathrm{OD}>\mathrm{DA}$
Adding (i), (ii), (iii) and (iv), we have
$\mathrm{OB}+\mathrm{OA}+\mathrm{OB}+\mathrm{OC}+\mathrm{OD}+\mathrm{OC}+\mathrm{OA}+\mathrm{OD}>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
or $20 \mathrm{~B}+20 \mathrm{D}+20 \mathrm{C}+2 \mathrm{OA}>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
or $2(O B+O D)+2(O C+O A)>A B+B C+C D+D A$
or $2(B D+A C)>A B+B C+C D+D A$
or $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{AD}<2(\mathrm{BD}+\mathrm{AC})$
6. The lengths of two sides of a triangle are 12 cm and 15 cm . between what two measures should the length of the third side fall?

Solution:

Let x cm be the length of the third side. We know that the sum of the lengths of any two sides of a triangle is greater than the length of the third side.
$\therefore 12+15>\mathrm{x}, \mathrm{so}, 27>\mathrm{x}$
$x+12>15$, so, $x>3$
$\mathrm{x}+15>12$, so, $\mathrm{x}>-3$
The numbers between 3 and 27 satisfy these.
\therefore the length of the third side could be any length between 3 cm and 27 cm .
7. In the figure $\mathrm{PQ}>\mathrm{PR}, \mathrm{QM}$ and RM are the bisectors of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ respectively.

Prove that $\mathrm{QM}>\mathrm{RM}$.

Solution:

Since QM and RM are angle bisectors of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$.
$\therefore \angle 1=\angle 2$ and $\angle 3=\angle 4$

Now in $\triangle P Q R, P Q>P R$
$\angle \mathrm{PRQ}>\angle \mathrm{PQR}$
(Angles opposite to larger side)

$$
\begin{aligned}
& \angle \mathrm{PRM}+\angle \mathrm{MRQ}>\angle \mathrm{PQM}+\angle \mathrm{MQR} \\
& \angle 4+\angle 3>\angle 1+\angle 2 \\
& 2 \angle 3>2 \angle 2 \\
& \Rightarrow \angle 3>\angle 2 \\
& \mathrm{QM}>\mathrm{RM} .
\end{aligned}
$$

8. In the figure, $P Q=P R$, show that $P S>P Q$.

Solution:

In $\triangle P Q R, P Q=P R$
$\Rightarrow \angle \mathrm{PQR}=\angle \mathrm{PRQ} . .$. (i)

Now in $\triangle \mathrm{PSQ}, \angle \mathrm{PQR}$ is the exterior angle
$\Rightarrow \angle \mathrm{PQR}=\angle \mathrm{PSQ}+\angle \mathrm{SPQ}$
$\Rightarrow \angle \mathrm{PQR}>\angle \mathrm{PSQ}$
$\Rightarrow \angle \mathrm{PRQ}>\angle \mathrm{PSQ}$
$(\angle \mathrm{PQR}=\angle \mathrm{PRQ})$
$\Rightarrow \mathrm{PS}>\mathrm{PR}$
(Side opposite to greater angle)
$P S>P Q$
$(P R=P Q)$
9. In $\triangle A B C, A C>A B$ and $A D$ is the bisector of $\angle A$ show that $y>x$.

Solution:

In $\triangle A B C$, since $A C>A B$
$\therefore \angle \mathrm{B}>\angle \mathrm{C}$
Also $\angle 1=\angle 2$
[Given]

Now, in $\triangle A B D$, we have
$\angle 1+\angle B+\angle x=180^{\circ}$
And in $\triangle A D C$, we have
$\angle 2+\angle \mathrm{C}+\angle \mathrm{y}=180^{\circ}$
Comparing equation (i) and (ii), we get

$$
\begin{aligned}
& \angle 1+\angle \mathrm{B}+\angle \mathrm{x}=\angle 2+\angle \mathrm{C}+\angle \mathrm{y} \\
& \angle \mathrm{~B}+\angle \mathrm{x}=\angle \mathrm{C}+\angle \mathrm{y}
\end{aligned}
$$

Now since $\angle \mathrm{B}>\angle \mathrm{C} \quad$ [Proved above]
$\angle x<\angle y$
or $\angle y>\angle x$
10. In $\triangle P Q R, P S \perp Q R$ and $S R>S Q$ show that $P R>P Q$.

Solution:

$P R>P Q$
Construction: Draw PT such that $\mathrm{SQ}=\mathrm{ST}$
Proof: In $\triangle \mathrm{PQS}$ and $\triangle \mathrm{PTS}$,
$\mathrm{PS}=\mathrm{PS}$ [Common]
$S Q=S T$ [By construction]
$\angle \mathrm{PSQ}=\angle \mathrm{PST}$
[Each 90°]
$\Delta \mathrm{PQS} \cong \Delta \mathrm{PTS}$
[SAS criterion]
$\angle 1=\angle 2$
[c.p.c.t.]
Now in \triangle PRT, we have the exterior angle $\angle 2$
$\angle 2=\angle 3+\angle T P R$
Or $\angle 2>\angle 3$
... $\angle 1>\angle 3$...... $(\angle 1=\angle 2)$
Now in $\triangle P Q R$, since
$\angle 1>\angle 3$
$P R>P Q$
[Side opposite to greater angle]
11. Prove that the difference of any two sides of a triangle is less than the third side.

Solution:

To Prove: $\mathrm{AC}-\mathrm{AB}<\mathrm{BC}$,
$\mathrm{BC}-\mathrm{AB}<\mathrm{AC}$
And $\mathrm{AC}-\mathrm{BC}<\mathrm{AB}$
Construction: Mark a point D on $A C$ such that

$A B=A D$ and join $B D$.
Proof: In $\triangle \mathrm{ABD}, \mathrm{AB}=\mathrm{AD}$
$\Rightarrow \angle 1=\angle 2$
Now in $\triangle \mathrm{ABD}, \mathrm{AD}$ is produced to C
$\Rightarrow \angle 3=\angle 1+\angle A$ (Exterior angle)
$\Rightarrow \angle 3>\angle 1$
Now in $\triangle \mathrm{BCD}, \mathrm{CD}$ is produced to A
$\Rightarrow \angle 2=\angle 4+C$
$\Rightarrow \angle 2>\angle 4$
From (i), (ii), and (iii), we get
$\angle 3>\angle 4$
$B C>C D$
Or $B C>A C-A D$
Or $B C>A C-A B$
Similarly we can prove other two inequalities
$\mathrm{BC}-\mathrm{AB}<\mathrm{AC}$ and $\mathrm{AC}-\mathrm{BC}<\mathrm{AB}$.
12. Show that the sum of the three altitudes of a triangle is less than the sum of the three sides of the triangle.

Solution:

$\triangle \mathrm{ABC}$, in which altitudes AQ, BR and CP meet at M .
To Prove:

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{BR}+\mathrm{CP}+\mathrm{AQ}
$$

Proof: In $\triangle A B Q$, we have $\angle A Q B=90^{\circ}$
$\angle A B Q$ will be a acute angle
$\angle \mathrm{AQB}>\angle \mathrm{ABQ}$
$A B>A Q$
Similarly, we can prove that:
$B C>B R$
And CA>CP
Adding three inequalities, we get
$\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{AQ}+\mathrm{BR}+\mathrm{CP}$
II Proof:
$A B>A Q, A C>A Q$
[Perpendicular is shortest]
$A B+A C>2 A Q$

Similarly $B C+C A>2 P C$
And $A B+B C>2 B R$
Adding (i), (ii) and (iii), we get

$$
\begin{gathered}
2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{CA}>2 \mathrm{AQ}+2 \mathrm{BR}+2 \mathrm{CP} \\
\text { or } \mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{AQ}+\mathrm{BR}+\mathrm{CP}
\end{gathered}
$$

13. In a quadrilateral $P Q R S$, the diagonals $P R$ and $Q S$ intersect each other at 0 . Show that
(i) $\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}>\mathrm{PR}+\mathrm{QS}$.

(ii) $P Q+Q R+R S+S P<2(P R+Q S)$.

Solution:

We know that in a triangle the sum of two sides of a triangle is greater
Than the third side. Therefore in $\triangle P S R$, we have
$\mathrm{PS}+\mathrm{SR}>\mathrm{PR}$
In $\triangle \mathrm{QSR}, \mathrm{QR}+\mathrm{RS}>\mathrm{QS}$
In $\triangle \mathrm{PQS}, \mathrm{PQ}+\mathrm{SP}>\mathrm{QS}$
In $\triangle P Q R, P Q+Q R>P R$
Adding (i), (ii), (iii) and (iv), we get
$2(\mathrm{SP}+\mathrm{PQ}+\mathrm{QR}+\mathrm{RS})>2(\mathrm{QS}+\mathrm{PR}) \mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}>\mathrm{PR}+\mathrm{QS}$
Similarly in $\triangle \mathrm{PQO}, \triangle \mathrm{QRO}, \triangle \mathrm{RSO}$ and $\triangle \mathrm{SPO}$,
we have
$\mathrm{QO}+\mathrm{PO}>\mathrm{PQ}$
$\mathrm{QO}+\mathrm{RO}>\mathrm{QR}$
$\mathrm{RO}+\mathrm{SO}>\mathrm{RS}$.
$\mathrm{SO}+\mathrm{PO}>\mathrm{SP}$
Adding (v), (vi), (vii) and (viii), we get
$2(\mathrm{QO}+\mathrm{SO}+\mathrm{PO}+\mathrm{OR})>\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP} 2(\mathrm{QS}+\mathrm{PR})>\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}$
or $\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}<2(\mathrm{QS}+\mathrm{PR})$.
14. In the figure below, what range of length is possible for the third side, x, to be.

Solution:

When considering the side lengths of a triangle, we want to use the Triangle Inequality Theorem m_{10}
The sum of the two sides should always be greater than the length of one side in order for the figure to be a triangle. Let's write our first inequality
$\mathrm{AB}+\mathrm{BC}>\mathrm{CA}$
$7+x>10$
$x>3$
So, we know that x must be greater than 3 . Let's see if our next inequality helps us narrow down the possible values of x .
$\mathrm{AB}+\mathrm{CA}>\mathrm{BC}$
$7+10>x$
$17>\mathrm{x}$

This inequality has shown us that the value of x can be no more than 17. Let's work out our final inequality.
$\mathrm{CA}+\mathrm{BC}>\mathrm{AB}$
$10+\mathrm{x}>7$
$\mathrm{x}>-3$
This final inequality does not help us narrow down our options because we were already aware of the fact that x had to be greater than 3. Moreover, side lengths of triangles cannot be negative, so we can disregard this inequality.

Combining our first two inequalities yields
$3<x<17$
So, using the Triangle Inequality Theorem shows us that x must have a length between 3 and 17 .

15. List the angles in order from least to greatest measure.

Solution:

For this exercise, we want to use the information we know about angle-side relationships. Since all side lengths have been given to us, We just need to order them in order from least to greatest, and then look At the angles opposite those sides.

In order from least to greatest, our sides are PQ, QR, and RP.
This means that the angles opposite those sides will be ordered from least To greatest. So, in order from least to greatest angle measure, We have $\angle \mathrm{R}, \angle \mathrm{P}$, and then $\angle \mathrm{Q}$.

