Assisted Practice | Expert Guidance | Personalized Insights

An Innovative Learning Methodology by IlTians.

Class –IX

Topic – Isosceles Triangle

1. Each base angles of an isosceles triangle is 15° more than its vertical angle. Find each angle of the triangle.

Solution:

In an isosceles $\triangle ABC$, AB = ACLet vertical angle, $\angle A = x$ then each angle = x + 15 \therefore But $\angle A + \angle B + \angle C = 180^{\circ}$ (Sum of angles of a triangle) $\Rightarrow x + x + 15^{\circ} + x + 15^{\circ} = 180^{\circ}$ $\Rightarrow 3x + 30^{\circ} = 180^{\circ}$ $\Rightarrow 3x = 180^{\circ} - 30^{\circ} = 150^{\circ}$ $\Rightarrow x = \frac{150^{\circ}}{3} = 50^{\circ}$ $\therefore \angle A = 50^{\circ}, \angle B = 50^{\circ} + 15^{\circ} = 65^{\circ}$ and $\angle C = 65^{\circ}$

2. The vertical angle of an isosceles triangle is twice the sum of its base angles. Find each angle of the triangle.

Solution:

In an isosceles triangle ABC, AB = AC

$$\Rightarrow x = \frac{180^{\circ}}{4} = 45^{\circ}$$

$$\therefore A = 2x = 2 \times 45^{\circ} = 90^{\circ} AB = 45^{\circ} AC = 45^{\circ}$$

3. In an isosceles triangle, triangle, each base angle is four times its vertical angle. Find each angle of the triangle.

Solution:

In an isosceles $\triangle ABC$, AB = ACLet vertical angle, $\angle A = x$ then each base angle $\angle B = \angle C = 4x$ But $\angle A + \angle B + \angle C = 180^{\circ}$ (Sum of angles of a triangle) $\therefore x + 4x + 4x = 180^{\circ}$ $\Rightarrow 9x = 180^{\circ}$ $\Rightarrow x = \frac{180^{\circ}}{9} = 20^{\circ}$ $\therefore \angle A = 20^{\circ}, \angle B = 4x = 4 \times 20^{\circ} = 80^{\circ}, \angle C = 4x = 4 \times 20^{\circ} = 80^{\circ}$

4. The ratio between the base angle and the vertical angle of an isosceles triangle is 2 : 5. Find each angle of the triangle.

Solution:

In an isosceles $\triangle ABC$, AB = ACRatio between vertical angle A and base angle B = 2:5Let vertical angle A = 2x then $\angle B = 5x$ and $\angle C = 5x$ But $\angle A + \angle B + \angle C = 180^{\circ}$ (Sum of angles of a triangle) $\therefore 2x + 5x + 5x = 180^{\circ}$ $\Rightarrow 12x = 180^{\circ} \Rightarrow x = \frac{180^{\circ}}{12} = 15^{\circ}$ $\therefore \angle A = 2x = 2 \times 15^{\circ} = 30^{\circ}, \angle B = 5x = 5 \times 15^{\circ} = 75^{\circ}$ $\angle C = 5x = 5 \times 15^{\circ} = 75^{\circ}$

5. In an isosceles triangle, a base angle is four times its vertical angle. Find all the angles of the triangle.

Solution:

Let the vertical angle be x° , then base angle = 4x In an isosceles Δ , base angles are equal

 $\therefore \angle A = x^{\circ}, \angle B = 4x^{\circ} \text{ and } \angle C = 4x^{\circ}$

Sum of angles of a triangle is 180°

$$\therefore x + 4x + 4x = 180^{\circ}$$
$$\Rightarrow x = \frac{180^{\circ}}{9} = 20^{\circ}$$

: Vertical angle = 20° and each base angle = $4 \times 20^{\circ} = 80^{\circ}$

6. One of the two equal angles of an isosceles triangle measure 65°. Find the measure of each angle of the triangle.

Solution:

Let the unequal or third angle be x°. In an isosceles triangle, $x + 65^\circ + 65^\circ = 180^\circ$ $\Rightarrow x + 130^\circ = 180^\circ$ $\Rightarrow x = 180^\circ - 130^\circ = 50^\circ$

Assisted Practice | Expert Guidance | Personalized Insights

An Innovative Learning Methodology by IlTians.

Hence, measure of each angle of the triangle are 65°, 65° and 50°.

7. The vertical angle of an isosceles triangle is three times the sum of its base angles. Find all angles of the triangle.

Solution:

Let each base angle be \boldsymbol{x}

: Vertical angle =
$$3(x + x) = 3(2x) = 6x$$

We know that,

Sum of angles of a traingle is 180°

$$\therefore x + x + 6x = 180^{\circ}$$

$$\Rightarrow 8x = 180^{\circ}$$

$$\therefore x = \frac{180^{\circ}}{8} = 22.5^{\circ}$$

Hence, each base angle = 22.5° and vertical angle = $6x = 6 \times 22.5^{\circ} = 135^{\circ}$

8. In the given figure express a in terms of b.

Solution:

In $\triangle ABC$, BC = BA $\therefore \angle BCA = \angle BAC$... (1) and exterior $\angle CBE = \angle BCA + \angle BAC$ $\Rightarrow a = \angle BCA + \angle BCA$ [by (1)] $\Rightarrow a = 2\angle BCA$ But $\angle ACB = 180^{\circ} - b$ ($\because \angle ACD$ and $\angle ACB$ are linear pair) $\Rightarrow \angle BCA = 180^{\circ} - b$ $\therefore a = 2\angle BCA = 2(180^{\circ} - b) = 360^{\circ} - 2b$

9. Find x in Figure

Given: DA = DB = DC, BD bisects $\angle ABC$ and $\angle ADB = 70^{\circ}$.

Solution:

DA = DB = DC BD bisects ∠ABC and ∠ADB = 70° But ∠ADB + ∠DAB + ∠DBA = 180° ⇒ 70° + ∠DBA + ∠DBA = 180° ⇒ 70° + 2∠DBA = 180°

(Angle of a triangle)

(:: DA = DB)

 $\Rightarrow 2 \angle DBA = 180^{\circ} - 70^{\circ} = 110^{\circ}$ $\therefore \angle DBA = \frac{110^{\circ}}{2} = 55^{\circ}$ $\therefore BD \text{ is a bisector of } \angle ABC, \angle DBA = \angle DBC = 55^{\circ}$ But in $\triangle DBC,$ DB = DC $\therefore \angle DCB = \angle DBC$ $\Rightarrow x = 55^{\circ}$

10. In $\triangle PQR$, PQ = QR = RP = 7 cm, then find each angle of $\triangle PQR$.

Solution:

In $\triangle PQR$, PQ = PR (Given) $\angle Q = \angle R$ (Angles opposite to equal sides) ... (1) Again, QR = RP $\angle Q = \angle P$...(2) From equations (1) and (2), we get $\angle P = \angle Q = \angle R$ But in $\triangle PQR$, we have $\angle P + \angle Q + \angle R = 180^{\circ}$ $3 \angle P = 180^{\circ} \Rightarrow \angle P = 60^{\circ}$ Hence $\angle P = \angle Q = \angle R = 60^{\circ}$

11. In the figure AB = AC and $\angle ACD = 110^{\circ}$ find A.

Solution:

 $\angle ACB + \angle ACD = 180^{\circ}$ (Linear pair) $\angle ACB + 110^{\circ} = 180^{\circ}$ $\Rightarrow \angle ACB = 180^{\circ} - 110^{\circ} = 70^{\circ}$ Since in $\triangle ABC$, AB = AC $\angle B = \angle C = 70^{\circ}$ Now, in $\triangle ABC$, we have $\angle A + \angle B + \angle C = 180^{\circ}$ (Sum angles) $\angle A + 70^{\circ} + 70^{\circ} = 180^{\circ}$

An Innovative Learning Methodology by IITians.

ssisted Practice | Expert Guidance | Personalized Insights

12. Prove that the medians of an equilateral triangle are equal.

Solution:

Let ABC be an equilateral triangle and let AD, BE and CF be the medians.

Since $\triangle ABC$ is an equilateral triangle $\angle A = \angle B = \angle C = 60^{\circ}$

Now in \triangle ADC and \triangle ABE,

We have BC = AC

$$DC = AE$$

 $\angle C = \angle A$ (Each 60°)

AC = AB

 $\Delta ADC \cong \Delta ABE$

AD = BE (c.p.c.t.)

Similarly, we can prove that BE = CF

AD = BE = CF

Hence medians of equilateral triangle are equal.