Class -IX

Topic - Isosceles Triangle

1. Each base angles of an isosceles triangle is 15° more than its vertical angle. Find each angle of the triangle.

Solution:
In an isosceles $\triangle A B C, A B=A C$
Let vertical angle, $\angle \mathrm{A}=\mathrm{x}$ then each angle $=\mathrm{x}+15$
\therefore But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(Sum of angles of a triangle)
$\Rightarrow \mathrm{x}+\mathrm{x}+15^{\circ}+\mathrm{x}+15^{\circ}=180^{\circ}$
$\Rightarrow 3 \mathrm{x}+30^{\circ}=180^{\circ}$
$\Rightarrow 3 \mathrm{x}=180^{\circ}-30^{\circ}=150^{\circ}$
$\Rightarrow x=\frac{150^{\circ}}{3}=50^{\circ}$
$\therefore \angle \mathrm{A}=50^{\circ}, \angle \mathrm{B}=50^{\circ}+15^{\circ}=65^{\circ}$ and $\angle \mathrm{C}=65^{\circ}$
2. The vertical angle of an isosceles triangle is twice the sum of its base angles. Find each angle of the triangle.

Solution:

In an isosceles triangle $\mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
$\Rightarrow \mathrm{x}=\frac{180^{\circ}}{4}=45^{\circ}$
$\therefore \angle \mathrm{A}=2 \mathrm{x}=2 \times 45^{\circ}=90^{\circ}, \angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=45^{\circ}$

3. In an isosceles triangle, triangle, each base angle is four times its vertical angle. Find each angle of the triangle.

Solution:

In an isosceles $\triangle A B C, A B=A C$
Let vertical angle, $\angle A=x$ then each base angle $\angle B=\angle C=4 x$
But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(Sum of angles of a triangle)

$\therefore \mathrm{x}+4 \mathrm{x}+4 \mathrm{x}=180^{\circ}$
$\Rightarrow 9 \mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=\frac{180^{\circ}}{9}=20^{\circ}$
$\therefore \angle \mathrm{A}=20^{\circ}, \angle \mathrm{B}=4 \mathrm{x}=4 \times 20^{\circ}=80^{\circ}, \angle \mathrm{C}=4 \mathrm{x}=4 \times 20^{\circ}=80^{\circ}$
4. The ratio between the base angle and the vertical angle of an isosceles triangle is $2: 5$. Find each angle of the triangle.

Solution:

In an isosceles $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
Ratio between vertical angle A and base angle $B=2: 5$
Let vertical angle $A=2 x$ then $\angle B=5 x$ and $\angle C=5 x$
But $\angle A+\angle B+\angle C=180^{\circ}$
(Sum of angles of a triangle)
$\therefore 2 \mathrm{x}+5 \mathrm{x}+5 \mathrm{x}=180^{\circ}$

$\Rightarrow 12 \mathrm{x}=180^{\circ} \Rightarrow \mathrm{x}=\frac{180^{\circ}}{12}=15^{\circ}$
$\therefore \angle \mathrm{A}=2 \mathrm{x}=2 \times 15^{\circ}=30^{\circ}, \angle \mathrm{B}=5 \mathrm{x}=5 \times 15^{\circ}=75^{\circ}$
$\angle \mathrm{C}=5 \mathrm{x}=5 \times 15^{\circ}=75^{\circ}$
5. In an isosceles triangle, a base angle is four times its vertical angle. Find all the angles of the triangle.

Solution:

Let the vertical angle be x°, then
base angle $=4 \mathrm{x}$
In an isosceles Δ, base angles are equal
$\therefore \angle \mathrm{A}=\mathrm{x}^{\circ}, \angle \mathrm{B}=4 \mathrm{x}^{\circ}$ and $\angle \mathrm{C}=4 \mathrm{x}^{\circ}$

Sum of angles of a triangle is 180°
$\therefore \mathrm{x}+4 \mathrm{x}+4 \mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=\frac{180^{\circ}}{9}=20^{\circ}$
\therefore Vertical angle $=20^{\circ}$ and each base angle $=4 \times 20^{\circ}=80^{\circ}$
6. One of the two equal angles of an isosceles triangle measure 65°. Find the measure of each angle of the triangle.

Solution:

Let the unequal or third angle be x°.
In an isosceles triangle, $x+65^{\circ}+65^{\circ}=180^{\circ}$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}+130^{\circ}=180^{\circ} \\
& \Rightarrow \mathrm{x}=180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
$$

Hence, measure of each angle of the triangle are $65^{\circ}, 65^{\circ}$ and 50°.
7. The vertical angle of an isosceles triangle is three times the sum of its base angles. Find all angles of the triangle.

Solution:

Let each base angle be x
\therefore Vertical angle $=3(\mathrm{x}+\mathrm{x})=3(2 \mathrm{x})=6 \mathrm{x}$
We know that,
Sum of angles of a traingle is 180°
$\therefore \mathrm{x}+\mathrm{x}+6 \mathrm{x}=180^{\circ}$
$\Rightarrow 8 \mathrm{x}=180^{\circ}$
$\therefore \mathrm{x}=\frac{180^{\circ}}{8}=22.5^{\circ}$
Hence, each base angle $=22.5^{\circ}$ and vertical angle $=6 \mathrm{x}=6 \times 22.5^{\circ}=135^{\circ}$
8. In the given figure express a in terms of b.

Solution:

In $\triangle \mathrm{ABC}$,
$B C=B A$
$\therefore \angle \mathrm{BCA}=\angle \mathrm{BAC}$

and exterior $\angle \mathrm{CBE}=\angle \mathrm{BCA}+\angle \mathrm{BAC}$
$\Rightarrow \mathrm{a}=\angle \mathrm{BCA}+\angle \mathrm{BCA}$ [by (1)]
$\Rightarrow \mathrm{a}=2 \angle \mathrm{BCA}$
But $\angle \mathrm{ACB}=180^{\circ}-\mathrm{b} \quad(\because \angle \mathrm{ACD}$ and $\angle \mathrm{ACB}$ are linear pair $)$
$\Rightarrow \angle \mathrm{BCA}=180^{\circ}-\mathrm{b}$
$\because \mathrm{a}=2 \angle \mathrm{BCA}=2\left(180^{\circ}-\mathrm{b}\right)=360^{\circ}-2 \mathrm{~b}$
9. Find x in Figure

Given: $\mathrm{DA}=\mathrm{DB}=\mathrm{DC}, \mathrm{BD}$ bisects $\angle \mathrm{ABC}$ and $\angle \mathrm{ADB}=70^{\circ}$.

Solution:

$\mathrm{DA}=\mathrm{DB}=\mathrm{DC}$

BD bisects $\angle \mathrm{ABC}$ and $\angle \mathrm{ADB}=70^{\circ}$
But $\angle \mathrm{ADB}+\angle \mathrm{DAB}+\angle \mathrm{DBA}=180^{\circ}$
(Angle of a triangle)
$\Rightarrow 70^{\circ}+\angle \mathrm{DBA}+\angle \mathrm{DBA}=180^{\circ}$
$\Rightarrow 70^{\circ}+2 \angle \mathrm{DBA}=180^{\circ}$

MATHEMATICS

$\Rightarrow 2 \angle \mathrm{DBA}=180^{\circ}-70^{\circ}=110^{\circ}$
$\therefore \angle \mathrm{DBA}=\frac{110^{\circ}}{2}=55^{\circ}$
$\because \mathrm{BD}$ is a bisector of $\angle \mathrm{ABC}, \angle \mathrm{DBA}=\angle \mathrm{DBC}=55^{\circ}$
But in $\triangle \mathrm{DBC}$,

DB = DC
$\therefore \angle \mathrm{DCB}=\angle \mathrm{DBC}$
$\Rightarrow \mathrm{x}=55^{\circ}$
10. In $\triangle P Q R, P Q=Q R=R P=7 \mathrm{~cm}$, then find each angle of $\triangle P Q R$.

Solution:

In $\triangle P Q R, P Q=P R$ (Given)
$\angle \mathrm{Q}=\angle \mathrm{R} \quad$ (Angles opposite to equal sides)
Again, $\mathrm{QR}=\mathrm{RP}$

$\angle \mathrm{Q}=\angle \mathrm{P}$
From equations (1) and (2), we get
$\angle P=\angle Q=\angle R$
But in $\triangle P Q R$, we have
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$3 \angle \mathrm{P}=180^{\circ} \Rightarrow \angle \mathrm{P}=60^{\circ}$
Hence $\angle P=\angle Q=\angle R=60^{\circ}$
11. In the figure $A B=A C$ and $\angle A C D=110^{\circ}$ find A.

Solution:

$$
\begin{aligned}
& \angle \mathrm{ACB}+\angle \mathrm{ACD}=180^{\circ} \\
& \angle \mathrm{ACB}+110^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{ACB}=180^{\circ}-110^{\circ}=70^{\circ}
\end{aligned}
$$

(Linear pair)

Since in $\triangle A B C, A B=A C$

$\angle \mathrm{B}=\angle \mathrm{C}=70^{\circ}$
Now, in $\triangle A B C$, we have

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad \text { (Sum angles) } \\
& \angle \mathrm{A}+70^{\circ}+70^{\circ}=180^{\circ}
\end{aligned}
$$

12. Prove that the medians of an equilateral triangle are equal.

Solution:

Let ABC be an equilateral triangle and let AD, BE and CF be the medians.
Since $\triangle A B C$ is an equilateral triangle $\angle A=\angle B=\angle C=60^{\circ}$
Now in $\triangle A D C$ and $\triangle A B E$,
We have $B C=A C$
$\mathrm{DC}=\mathrm{AE}$
$\angle \mathrm{C}=\angle \mathrm{A}$
(Each 60 ${ }^{\circ}$)
$\mathrm{AC}=\mathrm{AB}$
$\Delta \mathrm{ADC} \cong \triangle \mathrm{ABE}$

$\mathrm{AD}=\mathrm{BE}$
Similarly, we can prove that $\mathrm{BE}=\mathrm{CF}$
$\mathrm{AD}=\mathrm{BE}=\mathrm{CF}$
Hence medians of equilateral triangle are equal.

