Class - 9

Topic - Logarithm

1. Convert each of the following to logarithmic forms.

(i)
$$5^2 = 25$$

(ii)
$$3^{-3} = \frac{1}{27}$$

(iii)
$$(64)^{\frac{1}{3}} = 4$$

(iv)
$$6^0 = 1$$

$$(v) 10^{-2} = 0.01$$

(vi)
$$4^{-1} = \frac{1}{4}$$

Solution:

We know that $a^b = x \Rightarrow b = \log_a x$

(i)
$$5^2 = 25$$

$$\therefore \log_5 25 = 2$$

(ii)
$$3^{-3} = \frac{1}{27}$$

$$\therefore \log_3\left(\frac{1}{27}\right) = -3$$

(iii)
$$(64)^{\frac{1}{3}} = 4$$

$$\therefore \log_{64} 4 = \frac{1}{3}$$

(iv)
$$6^0 = 1$$

$$\therefore \log_6 1 = 0$$

(v)
$$10^{-2} = 0.01$$

$$\therefore \log_{10}(0.01) = -2$$

(vi)
$$4^{-1} = \frac{1}{4}$$

$$\therefore \log_4\left(\frac{1}{4}\right) = -1$$

- 2. By converting to exponential form fin the value of each of the following.
 - (i) log₂ 64
 - (ii) log₈ 32
 - (iii) $\log_3 \frac{1}{9}$
 - (iv) $\log_{0.5}(16)$
 - (v) $log_2(0.125)$
 - (vi) log₇ 7

Solution:

- (i) Suppose $\log_2 64 = x$, then $2^x = 64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \Rightarrow 2^x = 2^6$
 - \therefore x = 6. Hence, $\log_2 64 = 6$
- (ii) Suppose $\log_8 32 = x$, then $8^x = 32 \Rightarrow 2^{3x} = 2^5$

$$\therefore 3x = 5 \Rightarrow x = \frac{5}{3}$$

Hence, $\log_8 32 = \frac{5}{3}$

(iii) Suppose $\log_3 \frac{1}{9} = x$, then $3^x = \frac{1}{9} = \frac{1}{3^2} = 3^{-2}$

$$\therefore x = -2. \text{ Hence, } \log_3\left(\frac{1}{9}\right) = -2$$

- (iv) Suppose $\log_{0.5}(16) = x$, then $(0.5)^x = 16 \Rightarrow \left(\frac{1}{2}\right)^x = 2 \times 2 \times 2 \times 2$
- (v) Suppose $\log_2(0.125) = x$, then $2^x = 0.125 = \frac{0.125}{1000} = \frac{1}{8} = \frac{1}{2^3}$

$$\Rightarrow 2^x = 2^{-3}$$

$$x = -3$$
. Hence, $\log_2(0.125) = -3$

(vi) Suppose $\log_7 7 = x$, then $7^x = 7 = 7^1$

$$\therefore$$
 x = 1. Hence, $\log_7 7 = 1$

- 3. Find the value of x, when:
 - (i) $\log_2 x = -2$
 - (ii) $\log_x 9 = 1$
 - (iii) $\log_9 243 = x$
 - (iv) $\log_3 x = 0$

(v)
$$\log_4 32 = x - 4$$

(vi)
$$\log_{\sqrt{3}}(x-1) = 2$$

Solution:

(i)
$$\log_2 x = -2$$

$$\therefore 2^{-2} = x \Rightarrow x = \frac{1}{2^2} = \frac{1}{2 \times 2} = \frac{1}{4}$$

Hence,
$$x = \frac{1}{4}$$

(ii)
$$\log_x 9 = 1$$

$$\therefore x^1 = 9 \Rightarrow x = 9$$

Hence,
$$x = 9$$

(iii)
$$\log_9 243 = x$$

$$... 9^{x} = 243$$

$$\Rightarrow (3^2)^x = 3 \times 3 \times 3 \times 3 \times 3 \Rightarrow 3^{2x} = 3^5$$

$$\Rightarrow 2x = 5 \Rightarrow x = \frac{5}{2} = 2.5.$$

Hence,
$$x = 2.5$$

(iv)
$$\log_3 x = 0$$

$$\Rightarrow 3^0 = x \Rightarrow x = 1.$$

Hence,
$$x = 1$$

$$(: x^0 = 1)$$

$$(v) \log_4 32 = x - 4$$

$$4^{x-4} = 32 \Rightarrow (2 \times 2)^{x-4} = 2^5 \Rightarrow (2^2)^{x-4} = 2^5 \Rightarrow 2^{2x-8} = 2^5$$

On comparing both sides 2x - 8 = 5

$$\Rightarrow 2x = 13 \Rightarrow x = \frac{13}{2}.$$

Hence,
$$x = \frac{13}{2}$$

$$(vi)\log_{\sqrt{3}}(x-1)=2$$

$$x = 3 + 1 = 4$$
.

Hence,
$$x = 4$$

- 4. Express each of the following as a single logarithm:
 - (i) $2 \log_{10} 8 + \log_{10} 36 \log_{10} (1.5) 3 \log_{10} 2$

(ii)
$$1 - 2 \log 5 + 3 \log 2$$

(iii)
$$2\log_{102} 5 + 2\log_{10} 3 - \log_{10} 2 + 1$$

(iv)
$$2 + \frac{1}{2} \log_{10} 9 + 2\log_{10} 5$$

Solution:

(i)
$$2 \log_{10} 8 + \log_{10} 36 - \log_{10} (1.5) - 3 \log_{10} 2$$

 $= \log_{10} (8)^2 + \log_{10} 36 - \log_{10} (1.5) - \log_{10} 2^3$
 $= \log_{10} 64 + \log_{10} 36 - \log_{10} 1.5 - \log_{10} 8$
 $= \log_{10} \frac{64 \times 36}{1.5 \times 8} = \log_{10} \left(\frac{64 \times 36 \times 10}{15 \times 8}\right) = \log_{10} 192$
(ii) $1 - 2 \log 5 + 3 \log 2 = \log 10 - \log 5^2 + \log 2^3$ [: $\log_a 10 = 1$]
 $= \log 10 - \log 25 + \log 8$
 $= (\log 10 - \log 25) + \log 8$
 $= (\log 10 - \log 25) + \log 8$
 $= \log \frac{10}{25} - \log 8 = \log \frac{10}{25} \times 8 = \log \frac{16}{5}$
(iii) $2 \log_{10} 5 + 2 \log_{10} 3 - \log_{10} 2 + 1$
 $= \log_{10} (5)^2 + \log_{10} (3)^2 - \log_{10} 2 + \log_{10} 10$ [$\log_{10} 10 = 1$]
 $= \log_{10} 25 + \log_{10} 9 - \log_{10} 2 + \log_{10} 10 = \log_{10} \frac{25 \times 9 \times 10}{2} = \log_{10} 1125$

(iv)
$$2 + \frac{1}{2}\log_{10} 9 - 2\log_{10} 5$$

$$= \log_{10} 100 + \log_{10} (9)^{\frac{1}{2}} - \log_{10} (5)^{2} \qquad [\because \log_{10} 100 = 2]$$

$$= \log_{10} 100 + \log_{10} 3 - \log_{10} 25$$

$$= \log_{10} \frac{100 \times 3}{25} = \log_{10} 12$$

5. Solve for x:

(i)
$$\log_{10}(x-10)=1$$

(ii)
$$\log(x^2-21)=2$$

(iii)
$$\log(x-2) + \log(x+2) = \log 5$$

(iv)
$$\log(x+5) + \log(x-5) = 4 \log 2 + \log 3$$

(v)
$$\log(x+4) - \log(x-4) = \log 2$$

(i)
$$\log_{10}(x - 10) = 1$$

 $\Rightarrow \log_{10}(x - 10) = \log_{10} 10$ (: $\log 10 = 1$)

$$\Rightarrow$$
 x - 10 = 10 \Rightarrow x = 10 + 10 \Rightarrow x = 20

(ii)
$$\log(x^2 - 21) = 2$$

 $\Rightarrow \log_{10}(x^2 - 21) = \log_{10} 10$ (: $\log_{100} 2$)
 $\Rightarrow x^2 - 21 = 100$
 $\Rightarrow x^2 = 100 + 21 \Rightarrow x^2 = 121$
 $\Rightarrow x = 11$

(iii)
$$\log(x-2) + \log(x+2) = \log 5$$

 $\Rightarrow \log(x-2) \times (x+2) = \log 5$ [: $\log_a m + \log_a n \log_a mn$]
 $\Rightarrow \log(x^2 - 4) = \log 5$
 $\Rightarrow x^2 - 4 = 5$
 $\Rightarrow x^2 = 5 + 4$
 $\Rightarrow x^2 = 9$
 $\Rightarrow (x)^2 = (3)^2$
 $\Rightarrow x = 3$

(iv)
$$\log(x + 5) + \log(x - 5) = 4 \log 2 + 2 \log 3$$

 $\Rightarrow \log(x + 5) \times (x - 5) = 4 \log 2 + 2 \log 3$ [: $\log_a m + \log_a n = \log_a mn$]
 $\Rightarrow \log[(x)^2 - (5)^2] = \log 2^4 + \log 3^2$
 $\Rightarrow \log(x^2 - 25) = \log 16 + \log 9$
 $\Rightarrow \log(x^2 - 25) = \log(16 \times 9)$ [: $\log_a m + \log_a n = \log_a mn$]
 $\Rightarrow \log(x^2 - 25) = \log 144$
 $\Rightarrow x^2 - 25 = 144$
 $\Rightarrow x^2 - 25 = 144$
 $\Rightarrow x^2 = 144 + 25$
 $\Rightarrow x^2 = 169 \Rightarrow (x^2) = (13)^2$
 $\Rightarrow x = 13$

$$(v) \log(x+4) - \log(x-4) = \log 2 \Rightarrow \log \frac{(x+4)}{(x-4)} = \log 2$$

$$\Rightarrow \frac{x+4}{x-4} = 2 \Rightarrow x+4 = 2(x-4)$$

$$\Rightarrow x+4 = 2x-8$$

$$\Rightarrow x-2x = -8-4$$

$$\Rightarrow -x = -12$$

$$\Rightarrow x = 12$$

6. Given $\log x = m + n$ and $\log y = m - n$, express the value of $\log \frac{10x}{y^2}$ in terms of m and n.

Solution:

$$\log x = m + n \qquad (Given) \qquad ...(1)$$

$$\log y = m - n \qquad (Given) \qquad ...(2)$$

$$\log \frac{10x}{y^2} = \log 10x - \log y^2 \qquad \left(\log_a \frac{m}{n} = \log_a m - \log_a n\right)$$

$$= \log 10 + \log x - \log y^2$$

$$= \log 10 + \log x - 2 \log y$$

$$1 + \log x - 2 \log y \qquad [\because \log 10 = 1]$$
Putting the value of $\log x = m + n$ and $\log y = m - n$, we get
$$= 1 + (m + n) - 2(m - n) = 1 + m + n - 2m + 2n = 1 - m + 3n$$

- 7. If log 9 = 0.9030, find the value of:
 - (i) log 4
 - (ii) $\log \sqrt{32}$
 - (iii) log(0.125)

$$\log 8 = 0.9030 \Rightarrow \log(2^{3}) = 0.9030 \Rightarrow 3 \log 2 = 0.9030$$

$$\log 2 = \frac{0.9030}{3} = 0.3010$$

$$(i) \log 4 = \log 2^{2} = 2 \log 2 = 2(0.3010) = 0.6020$$

$$(ii) \log \sqrt{32} = \log(32)^{\frac{1}{2}} = \frac{1}{2} \log 2^{5}$$

$$= \frac{5}{2} \log 2 = \frac{5}{2} (0.3010) = 5 \times 0.1505 = 0.7525$$

$$(iii) \log(0.125) = \log \frac{125}{1000} = \log \left(\frac{1}{8}\right)$$

$$= \log \left(\frac{1}{2}\right)^{3} = \log(2)^{-3} = -3 \log 2 = -3(0.3010) = -0.9030$$

- 8. If $\log 27 = 1.4313$, find the value of:
 - (i) log 9

(ii) log 30

Solution:

$$\log 27 = 1.4313 \Rightarrow \log 3^3 = 1.4313 \Rightarrow 3\log 3 = 1.4313$$
$$\Rightarrow \log 3 = \frac{1.4313}{3} = 0.477$$

(i)
$$\log 9 = \log 3^2 = 2 \log 3 = 2(0.4771) = 0.9542$$

(ii)
$$\log 30 = \log(3 \times 10) = \log 3 + \log 10 = 0.4771 + 1 = 1.4771$$

9. Show that log(1+2+3) = log 1 + log 2 + log 3

Solution:

$$l = log \frac{a^2}{bc}$$
, $m = log \frac{b^2}{ca}$ and $n = log \frac{c^2}{ab}$

 $log(1 + 2 + 3) = log 6 = log(1 \times 2 \times 3) = log 1 + log 2 + log 3$. Hence proved.

10. If $I = g \frac{a^2}{bc}$; $m = log \frac{b^2}{ca}$ and $n = log \frac{c^2}{ab}$ find the value of l + m + n.

Solution:

$$\begin{split} &l = \log \frac{a^2}{bc}, m = \log \frac{b^2}{ca}, n = \log \frac{c^2}{ab} \\ &l + m + n = \log \frac{a^2}{bc} + \log \frac{b^2}{ca} + \log \frac{c^2}{ab} = \log \left(\frac{a^2}{bc} \times \frac{b^2}{ca} \times \frac{c^2}{ab}\right) \\ &= \log \frac{a^2b^2c^2}{a^2b^2c^2} = \log 1 = \log 1 \times \frac{10}{10} = \log \frac{10}{10} \\ &= \log 10 - \log 10 = 1 - 1 = 0 \end{split}$$

11. Solve:

(i) if
$$\log(a+1) = \log(4a-3) - \log 3$$
; find a

(ii) if
$$2 \log y - \log x - 3 = 0$$
, express x in terms of y.

(iii) Prove that:
$$log_{10} 125 = 3(1 - log_{10} 2)$$

(i)
$$\log(a + 1) = \log(4a - 3) - \log 3$$

$$\Rightarrow \log(a + 1) = \log\frac{(4a - 3)}{3}$$

$$\Rightarrow (a + 1) = \frac{(4a - 3)}{3} \Rightarrow 3(a + 1) = 4a - 3 \Rightarrow 3a + 3 = 4a - 3$$

$$\Rightarrow 3a - 4a = -3 - 3$$

$$\Rightarrow -a = -6$$
$$\Rightarrow a = 6$$

(ii)
$$2 \log y - \log x - 3 = 0$$

 $\Rightarrow 2 \log y - \log x = 3$
 $\Rightarrow \log y^2 - \log x = 3$
 $\Rightarrow \log \frac{y^2}{x} = 3$
 $\Rightarrow \log \frac{y^2}{x} = \log 1000 \Rightarrow \frac{y^2}{x} = 1000 \Rightarrow y^2 = 1000x$
 $\Rightarrow 1000x = y^2 \Rightarrow x = \frac{y^2}{1000}$
(iii) $\log_{10} 125 = 3(1 - \log_{10} 2)$
LHS = $\log_{10} 125 = \log_{10} 5^3 = 3\log_{10} 5$
RHS = $3(1 - \log_{10} 2) = 3\log_{10} \left(\frac{10}{2}\right) = 3\log_{10}(5) = 3\log_{10} 5$
 \therefore LHS = RHS

12. If $a^2 = \log x$, $b^3 = \log y$ and $3a^2 - 2b^2 = 6 \log z$, express y in terms of x and z.

Solution:

$$a^{2} = \log x, b^{3} = \log y \Rightarrow 3a^{2} - 2b^{3} = 6 \log z$$

$$\Rightarrow 3 \log x - 2 \log y = 6 \log z \Rightarrow \log x^{3} - \log y^{2} = \log z^{6}$$

$$\Rightarrow \log \frac{x^{3}}{y^{2}} = \log z^{6} \Rightarrow \frac{x^{3}}{y^{2}} = z^{6} \Rightarrow y^{2}z^{6} = x^{3} \Rightarrow y^{2} = \frac{x^{3}}{z^{6}}$$

$$\Rightarrow y = \left(\frac{x^{3}}{y^{6}}\right)^{\frac{1}{2}} \Rightarrow y = \frac{x^{\frac{3}{2}}}{z^{3}} = x^{\frac{3}{2}} \div z^{3}.$$
Hence, $y = x^{\frac{3}{2}} \div z^{3}$

13. If $a^2 + b^2 = 23ab$, show that : $\log \frac{a+b}{5} = \frac{1}{2} (\log a + \log b)$

$$a^2 + b^2 = 23ab$$

 $\Rightarrow a^2 + b^2 + 2ab = 23ab + 2ab$ (Adding 2ab both sides, we get)
 $\Rightarrow a^2 + b^2 + 2ab = 25ab \Rightarrow (a + b)^2 = 25ab$

$$\Rightarrow \frac{(a+b)^2}{25} = ab \Rightarrow \left(\frac{a+b}{5}\right)^2 = ab$$

Taking log both sides, we get

$$\log\left(\frac{a+b}{5}\right)^{2} = \log(ab) \qquad [\because \log_{a} m^{n} = n \log_{a} m]$$

$$\Rightarrow 2 \log\frac{a+b}{5} = \log(ab) \Rightarrow \log\frac{a+b}{5} = \frac{1}{2}\log(ab)$$

$$\Rightarrow \log\frac{a+b}{5} = \frac{1}{2}(\log a + \log b)$$

14. If m = log 20 and n = log 25, find the value of x, if: 2 log(x + 1) = 2m - n. Solution:

m = log 20, n = log 25
2 log(x + 1) = 2m - n
⇒ log(x + 1)² = 2 log 20 - log 25 ⇒ log(x + 1)² = log(20)² - log 25
⇒ log(x + 1)² = log 400 - log 25 ⇒ log(x + 1)² = log
$$\frac{400}{25}$$

∴ (x + 1)² = 16 = (4)²
∴ x + 1 = 4
⇒ x = 4 - 1 = 3
∴ x = 3

15. If $\left[\log 7 - \log 2 + \log 16 - 2\log 3 - \log \frac{7}{45}\right] = 1 + \log n$, find the value of n. Solution:

$$\log 7 - \log 2 + \log 16 - 2 \log 3 - \log \frac{7}{45} = 1 + \log n$$

$$\Rightarrow \log 7 - \log 2 + \log 16 - \log 3^2 - \log \frac{7}{45} = \log 10 + \log n \qquad (\because \log 10 = 1)$$

$$\Rightarrow \log 7 - \log 2 + \log 16 - \log 9 - \log \frac{7}{45} = \log 10 + \log n$$

$$\Rightarrow \log \left(\frac{7 \times 16 \times 45}{2 \times 9 \times 7}\right) = \log(10 \times n) = \log(10 n) \qquad \left(\because 10n = \frac{7 \times 16 \times 45}{2 \times 9 \times 7}\right)$$

$$\Rightarrow n = \frac{7 \times 16 \times 45}{10 \times 2 \times 9 \times 7} = 4$$
Hence, $n = 4$