Assisted Practice | Expert Guidance | Personalized Insights

An Innovative Learning Methodology by IlTians.

Class –IX

Solution:

Topic – Midpoint Theorem

1. The adjoining figure shows a parallelogram ABCD in which P is mid-point of AB and Q is mid-point of CD. Prove that: AE=EF=FC

Since $PB = \frac{1}{2}AB$		[Given, P is mid-point of AB]
$DQ = \frac{1}{2}DC$		[Given, Q is the mid-point of DC]
∴ PB=DQ		[AB=DC; the opp. Sides of gm ABCD]
Also, PB DQ		[As AB DC]
∴DPBQ is a parallelogram		[Opp. sides are parallel and equal]
\Rightarrow DP QB		[Opp. sides of the gm DPBQ]
Now in Δ ABF:		
P is the mid-point of AB		[Given]
PE BF		[As DP QB]
∴ PE bisects AF		
i.e. AE=EF	(1)	
Similarly, in Δ CDE:		
QF bisects CE		[Q is the mid-point of CD and QF DE]
∴ EF=FC	(2)	
∴ AE=EF=FC		[From I and II]
Hence Proved		

2. In a right-angled triangle ABC, $\angle \mathrm{ABC} = 90^\circ$ and D is the mid-point of AC

Prove that:
$$BD = \frac{1}{2}AC$$

Solution:

According to the given statement, the figure will be as shown alongside: Draw the line segment DE parallel to CB, which meets AB at point E. Since, DE||CB and AB is transversal, $\angle AED = \angle ABC$

Assisted Practice | Expert Guidance | Personalized Insights An Innovative Learning Methodology by IITians.

 $= 90^{\circ} = \angle DEB$

Also, as D is the mid-point of AC and DE is parallel to CB; DE bisects side AB. i.e. AE=BE

In $\triangle AED$ and $\triangle BED$

$\angle AED = \angle BED$	[Each 90 ⁰]
AE=BE	[Proved above]
And, DE=DE	[Common]
$\therefore \Delta AED \cong \Delta BED$	[By S.A.S]
\Rightarrow BD=AD	[C.P.C.T.C.]
1	

 $=\frac{1}{2}$ AC Hence Proved

3. In a trapezium ABCD, AB||DC, E is the mid-point of AD. A line through E and parallel to intersect to AB intersects BC at point F. Show that:

(i) F is the mid-point of BC

(ii) 2EF=AB+DC

Solution:

(i) According to the given statement, the figure, will be shown alongside:

Draw diagonal BD which intersects EF at point 0.

In triangle ABD, E is the mid-point of AD and EO||AB (as EF||AB)

 \div 0 is the mid-point of BD [By the converse of mid-point theorem]

In triangle ABD, E is mid-point of AD and EO||AB

 \therefore 0 is the mid-point of BD

In Δ BCD, O is the mid-point of BD

And OF||DC

 \div F is the mid-point of BC

Hence Proved

(ii) In ΔABD,

E is the mid-point of AD and O is the mid-point of BD

 $\therefore EO = \frac{1}{2}AB \qquad \dots (1) \qquad [By mid-point theorem]$

Also, O is the mid-point of BD and F is mid-point of BC

 $\therefore OF = \frac{1}{2}DC \qquad \dots (2) \qquad [By mid-point theorem]$ $\Rightarrow EO + OF = \frac{1}{2}AB + \frac{1}{2}DC \Rightarrow EF = \frac{1}{2}(AB + DC)$

[By the converse of mid-point theorem]

[By the converse of mid-point theorem]

[Proved above]

(as EF||AB||DC)

4. Use the Intercept Theorem to prove the converse of the Mid-point Theorem.

Solution:

Converse of Mid-point Theorem is: The straight line drawn through the Mid-point of one side of a triangle and parallel to another side bisects the Third side

Given: In triangle ABC, D is the mid-point of side AB and DE is parallel to BC To Prove: DE bisects AC i.e. AE=CE

Construction: Through vertex A, draw FG parallel to BC so that FG||BC||DE Proof:

Since, FG||DE||BC and the transversal AB makes equal intercepts on these three parallel lines i.e.

AD=DB. Also, AC is an another transversal. According to Intercept Theorem, if a transversal

makes equal intercepts on three or more parallel lines, then any other transversal, for the same

parallel lines, will also make equal intercepts.

 \therefore AE=CE Hence proved

5. Use the information, given in the adjoining figure, to show that: 0AB=AC.

Solution:

Since PB, AD and QC are perpendicular to the same line BC, they are parallel to each other i.e. PB||AD||QC

Since, PB||AD||QC and PQ is a transversal making equal intercepts i.e. PA=AQ; therefore the other transversal BC will also make equal intercepts i.e. BD=CD.

Now in $\triangle ABD$ and $\triangle ACD$,

(i) BD=CD	[Proved above]
(ii) AD=AD	[Common]
(iii) $\angle ADB = \angle ADC = 90^{\circ}$	[As, AD⊥BC]
$\therefore \Delta ABD \equiv \Delta ACD$	[By SAS]
\Rightarrow AB=AC	[By C.P.C.T.C]
Hence proved	

6. In the adjoining figure, D, E, F are the mid-points of the sides AB, BC and CA respectively.

(i) If AC=7.4 cm, find DE.

Head Office: 106-107-108 Lake Homes Shopping Complex, Chandivali IRB Road, Mumbai 400076 T.: 022 4120 3067 <u>t.: info@speed</u>labs.in

- (ii) If DF=4.1 cm, find BC.
- (iii) If perimeter of $\triangle ABC$ is 21.4 cm, find EF.

Solution:

(i) Since D and E are the mid-points of AB and BC respectively, so

$$DE = \frac{1}{2}AC = \left(\frac{1}{2} \times 7.4\right) cm = 3.7 cm.$$

(ii) Since D and E are the mid-points of AB and AC respectively, so

$$DF = \frac{1}{2}BC \Rightarrow BC = 2DF = (2 \times 4.1)cm = 8.2 cm$$

Hence, BC=8.2 cm

(iii) Now, AC=7.4cm, BC=8.2 cm and perimeter of ΔABC =21.4 cm.

 $\therefore AB+AC+BC=21.4 \text{ cm} \Rightarrow AB+7.4 \text{ cm}+8.2 \text{ cm}=21.4 \text{ cm}$

 \Rightarrow AB=(21.4-15.6)cm=5.8 cm

Since E and F are the midpoints of BC and AC respectively, so

$$EF = \frac{1}{2}AB = \left(\frac{1}{2} \times 5.8\right) cm = 2.9 cm.$$

7. Prove that the figure obtained by joining the mid-point of the adjacent

Sides of a quadrilateral are a parallelogram.

Solution:

Given: P, Q, R, S are the mid-points of the sides AB, BC, CD and DA respectively of ABCD

To prove: PQRS is a parallelogram.

Construction: Join BD.

Proof:

Statement	Reason
1. In $\triangle ABD$, PS BD and PS= $\frac{1}{BD}$	By Mid-Point Theorem
2	(P and S being mid-point of AB and AD resp.)
2. In \triangle BCD, QR BD and QR= $\frac{1}{2}$ BD	By Mid-Point Theorem
3. PSIIOR and PS=OR	(Q and R being mid-points BC and CD resp)
4. PORS is a parallelogram.	From 1 and 2
	One pair of opposite sides are parallel are
	equal.

 In the adjoining figure, ABCD is a parallelogram in which E and F are the Mid-points of AB and CD respectively. GH is a line segment, intersecting AD, EF and BC in G, P and H respectively. Prove that GP=PH.

D	F	
J		70
	1	1
1	- I	<u> </u>
1	PL	H
G	-	
7	1	
A		/B

Solution:

Proof:

Statement		Reason	
1.	AE=EB	E is the mid-point of AB	
2.	DF=FC	F is the mid-point of DC	
3.	AE=DF	AB=CD, being opposite, sides of a gm	
4.	AEFD is a gm	$\Rightarrow \frac{1}{AB} = \frac{1}{CD}$	
5.	5. AD EF		
6.	AD EF BC and AEB and GPH	AE=DF(trom 3)	
7.	GP=PH		