Class -IX

Topic - Midpoint Theorem

1. The adjoining figure shows a parallelogram $A B C D$ in which P is mid-point of $A B$ and Q is mid-point of $C D$. Prove that: $A E=E F=F C$

Solution:

Since $P B=\frac{1}{2} A B$
[Given, P is mid-point of AB]
$D Q=\frac{1}{2} D C$
[Given, Q is the mid-point of DC]
$\therefore \mathrm{PB}=\mathrm{DQ}$
Also, $\mathrm{PB}|\mid \mathrm{DQ}$
[$\mathrm{AB}=\mathrm{DC}$; the opp. Sides of \|gm ABCD]
\therefore DPBQ is a parallelogram
[As AB\||DC]
[Opp. sides are parallel and equal]
$\Rightarrow \mathrm{DP}|\mid \mathrm{QB}$
[Opp. sides of the || gm DPBQ]
Now in $\triangle \mathrm{ABF}$:
P is the mid-point of $A B$
[Given]
PE||BF
[As DP ||QB]
\therefore PE bisects AF
i.e. $\mathrm{AE}=\mathrm{EF}$

Similarly, in $\triangle C D E$:
QF bisects CE
[Q is the mid-point of $C D$ and $Q F \| D E]$
$\therefore \mathrm{EF}=\mathrm{FC}$
$\therefore \mathrm{AE}=\mathrm{EF}=\mathrm{FC}$

[From I and II]

Hence Proved
2. In a right-angled triangle $\mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$ and D is the mid-point of AC

Prove that: $\mathrm{BD}=\frac{1}{2} \mathrm{AC}$

Solution:

According to the given statement, the figure will be as shown alongside:
Draw the line segment DE parallel to CB , which meets AB at point E .
Since, $\mathrm{DE} \mid \mathrm{CB}$ and AB is transversal,
$\angle \mathrm{AED}=\angle \mathrm{ABC}$

MATHEMATICS

An Innovative Learning Methodology by IITians.
$=90^{\circ}=\angle \mathrm{DEB}$
Also, as D is the mid-point of $A C$ and $D E$ is parallel to $C B ; D E$ bisects side $A B$. i.e. $A E=B E$
In $\triangle \mathrm{AED}$ and $\triangle \mathrm{BED}$
$\angle A E D=\angle B E D$
$\mathrm{AE}=\mathrm{BE}$
And, $\mathrm{DE}=\mathrm{DE}$
$\therefore \triangle \mathrm{AED} \cong \triangle \mathrm{BED}$
$\Rightarrow \mathrm{BD}=\mathrm{AD}$
$=\frac{1}{2} \mathrm{AC} \quad$ Hence Proved
[Each 90°]
[Proved above]
[Common]
[By S.A.S]
[C.P.C.T.C.]
3. In a trapezium $\mathrm{ABCD}, \mathrm{AB}| | \mathrm{DC}, \mathrm{E}$ is the mid-point of AD . A line through E and parallel to intersect to $A B$ intersects $B C$ at point F. Show that:
(i) F is the mid-point of BC
(ii) $2 \mathrm{EF}=\mathrm{AB}+\mathrm{DC}$

Solution:

$\therefore 0$ is the mid-point of BD [By the converse of mid-point theorem]
[By the converse of mid-point theorem]
[Proved above]
(as EF||AB||DC)
[By the converse of mid-point theorem]
$\therefore \mathrm{F}$ is the mid-point of BC
Hence Proved
(ii) In $\triangle \mathrm{ABD}$,
E is the mid-point of $A D$ and O is the mid-point of $B D$
$\therefore \mathrm{EO}=\frac{1}{2} \mathrm{AB}$
[By mid-point theorem]
Also, O is the mid-point of $B D$ and F is mid-point of $B C$
$\therefore \mathrm{OF}=\frac{1}{2} \mathrm{DC}$
[By mid-point theorem]
$\Rightarrow \mathrm{EO}+\mathrm{OF}=\frac{1}{2} \mathrm{AB}+\frac{1}{2} \mathrm{DC} \Rightarrow \mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{DC})$
4. Use the Intercept Theorem to prove the converse of the Mid-point Theorem.

Solution:

Converse of Mid-point Theorem is: The straight line drawn through the
Mid-point of one side of a triangle and parallel to another side bisects the
Third side
Given: In triangle $A B C, D$ is the mid-point of side $A B$ and $D E$ is parallel to $B C$
To Prove: DE bisects AC i.e. AE=CE
Construction: Through vertex A, draw FG parallel to BC so that FG||BC||DE

Proof:
Since, $\mathrm{FG}||\mathrm{DE}|| \mathrm{BC}$ and the transversal AB makes equal intercepts on these three parallel lines i.e. $\mathrm{AD}=\mathrm{DB}$. Also, AC is an another transversal. According to Intercept Theorem, if a transversal makes equal intercepts on three or more parallel lines, then any other transversal, for the same parallel lines, will also make equal intercepts.
$\therefore \mathrm{AE}=\mathrm{CE}$ Hence proved
5. Use the information, given in the adjoining figure, to show that: $0 \mathrm{AB}=\mathrm{AC}$.

Solution:

Since PB, AD and QC are perpendicular to the same line BC , they are parallel to each other i.e. $P B\|A D\| Q C$
Since, $\mathrm{PB}\|\mathrm{AD}\| \mathrm{QC}$ and PQ is a transversal making equal intercepts i.e. $\mathrm{PA}=\mathrm{AQ}$; therefore the other transversal BC will also make equal intercepts i.e. $\mathrm{BD}=\mathrm{CD}$.
Now in $\triangle A B D$ and $\triangle A C D$,
(i) $\mathrm{BD}=\mathrm{CD}$
(ii) $\mathrm{AD}=\mathrm{AD}$
(iii) $\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$\therefore \triangle \mathrm{ABD} \equiv \triangle \mathrm{ACD}$
$\Rightarrow \mathrm{AB}=\mathrm{AC}$
[Proved above]
[Common]
$[\mathrm{As}, \mathrm{AD} \perp \mathrm{BC}]$
[By SAS]
[By C.P.C.T.C]

Hence proved
6. In the adjoining figure, $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the mid-points of the sides AB, BC and CA respectively.
(i) If $A C=7.4 \mathrm{~cm}$, find $D E$.

MATHEMATICS

(ii) If $\mathrm{DF}=4.1 \mathrm{~cm}$, find BC .
(iii) If perimeter of $\triangle A B C$ is 21.4 cm , find $E F$.

Solution:

(i) Since D and E are the mid-points of AB and BC respectively, so

$$
\mathrm{DE}=\frac{1}{2} \mathrm{AC}=\left(\frac{1}{2} \times 7.4\right) \mathrm{cm}=3.7 \mathrm{~cm} .
$$

(ii) Since D and E are the mid-points of AB and AC respectively, so

$$
\mathrm{DF}=\frac{1}{2} \mathrm{BC} \Rightarrow \mathrm{BC}=2 \mathrm{DF}=(2 \times 4.1) \mathrm{cm}=8.2 \mathrm{~cm}
$$

Hence, $\mathrm{BC}=8.2 \mathrm{~cm}$
(iii) $\mathrm{Now}, \mathrm{AC}=7.4 \mathrm{~cm}, \mathrm{BC}=8.2 \mathrm{~cm}$ and perimeter of $\triangle A B C=21.4 \mathrm{~cm}$.
$\therefore \mathrm{AB}+\mathrm{AC}+\mathrm{BC}=21.4 \mathrm{~cm} \Rightarrow \mathrm{AB}+7.4 \mathrm{~cm}+8.2 \mathrm{~cm}=21.4 \mathrm{~cm}$
$\Rightarrow \mathrm{AB}=(21.4-15.6) \mathrm{cm}=5.8 \mathrm{~cm}$
Since E and F are the midpoints of BC and AC respectively, so
$\mathrm{EF}=\frac{1}{2} \mathrm{AB}=\left(\frac{1}{2} \times 5.8\right) \mathrm{cm}=2.9 \mathrm{~cm}$.
7. Prove that the figure obtained by joining the mid-point of the adjacent

Sides of a quadrilateral are a parallelogram.

Solution:

Given: P, Q, R, S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively of ABCD

To prove: PQRS is a parallelogram.
Construction: Join BD.

Proof:

Statement	Reason		
1. In $\triangle \mathrm{ABD}, \mathrm{PS}\| \| \mathrm{BD}$ and $\mathrm{PS}=\frac{1}{2} \mathrm{BD}$	By Mid-Point Theorem (P and S being mid-point of AB and AD resp.) 2. In $\triangle \mathrm{BCD}, \mathrm{QR} \\| \mathrm{BD}$ and $\mathrm{QR}=\frac{1}{2} \mathrm{BD}$ 3. $\mathrm{PS} \\| \mathrm{QR}$ and $\mathrm{PS}=\mathrm{QR}$ 4. PQRS is a parallelogram..		
	(Q and R being mid-points BC and CD resp)		
From 1 and 2			
One pair of opposite sides are parallel are			
equal.			

8. In the adjoining figure, ABCD is a parallelogram in which E and F are the Mid-points of AB and CD respectively. GH is a line segment, intersecting $A D, E F$ and $B C$ in G, P and H respectively. Prove that $G P=P H$.
Solution:
Proof:

Statement	Reason			
1.	$\mathrm{AE}=\mathrm{EB}$	E is the mid-point of AB		
2.	$\mathrm{DF}=\mathrm{FC}$	F is the mid-point of DC		
3.	$\mathrm{AE}=\mathrm{DF}$	$\mathrm{AB}=\mathrm{CD}$, being opposite, sides of a \\|gm		
4.	AEFD is a $\\| \mathrm{gm}$	$\Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD}$		
5.	$\mathrm{AD} \\| \mathrm{EF}$			
6.	$\mathrm{AD}\\|\mathrm{EF}\\| \mathrm{BC}$ and AEB and GPH	$\mathrm{AE}=\mathrm{DF}$ (from 3)		
7.	$\mathrm{GP}=\mathrm{PH}$			

