Board - ICSE

Class - IX

Topic – Simultaneous Equation

1. Solve the following equations:

(i)
$$(x-4)(x+4) = (x+4)(x-7) + 33$$

(ii)
$$(x-2)(x+3) = x^2 - 4$$

(iii)
$$(x-1) = \frac{3}{4}(x+1) - \frac{1}{2}$$

(iv)
$$\frac{2}{3}(x-3) = 1 - \frac{5}{6}(3x-4)$$

$$(v) \frac{(x-1)}{2} - \frac{(x+1)}{3} = 5 - x$$

Solution:

(i)
$$(x-4)(x+4) = (x+4)(x-7) + 33$$

$$\Rightarrow x^2 - 4x + 4x - 16 = x^2 - 7x + 4x - 28 + 33$$

$$\Rightarrow$$
 x² - 16 = x² - 3x + 5 \Rightarrow x² - x² + 3x = 5 + 16 \Rightarrow 3x = 21

Hence,
$$x = \frac{21}{3} = 7$$

(ii)
$$(x-2)(x+3) = x^2 - 4 \Rightarrow x^2 + 3x - 2x - 6 = x^2 - 4$$

$$\Rightarrow$$
 x² + x - 6 = x² - 4 \Rightarrow x² + x - x² = -4 + 6

Hence,
$$x = 2$$

(iii)
$$(x-1) = \frac{3}{4}(x+1) - \frac{1}{2}$$

Multiplying both sides by 4, we get

$$4(x-1) = \frac{3}{4}(x+1) \times 4 - \frac{1}{2} \times 4$$

$$\Rightarrow 4x - 4 = 3x + 3 - 2$$

$$\Rightarrow 4x - 3x = 3 - 2 + 4$$

Hence,
$$x = 5$$

$$(iv)\frac{2}{3}(x-3) = 1 - \frac{5}{6}(3x-4)$$

Multiplying both sides by 6, we get

$$6 \times \frac{2}{3}(x-3) = 1 \times 6 - 6 \times \frac{5}{6}(3x-4) \Rightarrow 4(x-3) = 6 - 5(3x-4)$$

$$\Rightarrow 4x - 12 = 6 - 15x + 20 \Rightarrow 4x + 15x = 6 + 20 + 12$$

$$\Rightarrow 19x = 38$$

Hence,
$$x = \frac{38}{19} = 2$$

$$(v)\frac{x-1}{2} - \frac{x+1}{3} = 5 - x$$

Multiplying both sides by 6, we get

$$\Rightarrow 6 \times \frac{(x-1)}{2} - 6 \times \frac{(x+1)}{3} = 6 \times (5-x)$$

$$\Rightarrow 3(x-1) - 2(x+1) = 6(5-x) \Rightarrow 3x - 3 - 2x - 2 = 30 - 6x$$

$$\Rightarrow 3x - 2x + 6x = 30 + 3 + 2$$

$$\Rightarrow 7x = 35 \Rightarrow x = \frac{35}{7} \Rightarrow x = 5$$

Hence, x = 5

2. Find he value of a, if x = 0.5 is a solution of equation $ax^2 + (a - 1)x + 3 = a$.

Solution:

$$x = 0.5 = \frac{1}{2}$$
 [Given]

 $x = \frac{1}{2}$ is a solution of the given equation

$$ax^2 + (a - 1)x + 3 = a$$

Putting the value of x in the given equation, we have

$$a\left(\frac{1}{2}\right)^2 + (a-1) \times \frac{1}{3} + 3 = a \Rightarrow \frac{a}{4} + \frac{a-1}{2} + 3 = a$$

Multiplying both sides by 4, we get

$$\Rightarrow 4 \times \frac{a}{4} + \frac{4 \times (a-1)}{2} + 3 \times 4 = 4a$$

$$\Rightarrow$$
 a + 2a - 2 + 12 = 4a \Rightarrow a + 2a - 4a = 2 - 12

$$\Rightarrow -a = -10$$

Hence, a = 10

3. In a class there are x seats. If each student occupies one seat, 9 students remain standing and if two students occupy one seat, 7 seats are left empty. Find the number of seats in the class.

Solution:

Number of seats = x

[Given]

Case I: When I student occupy 1 seat 9 students are left standing.

Thus number of students = x + 9

Case II: When 2 students occupy 1 seat, 7 seats are left.

Thus number of seats occupied = x - 7

Number of students = 2(x - 7)

According to the given problem,

$$x + 9 = 2(x - 7) \Rightarrow x + 9 = 2x - 14 \Rightarrow x - 2x = -14 - 9$$

$$\Rightarrow -x = -23 \Rightarrow x = 23$$

Hence, number of seats are 23.

4. The height of a triangle is 3cm more than its base. If the area of the triangle is $104 \ cm^2$, find the lengths of its base and height.

Solution:

Let base b of a triangle (b) be x cm then height (h) be (x + 3) cm and area of triangle

$$(A) = 104 \text{ cm}^2$$

According to the given problem

$$\frac{1}{2}b \times h = A \Rightarrow \frac{1}{2}x \times (x+3) = 104$$

$$\Rightarrow$$
 x(x + 3) = 208 \Rightarrow x² + 3x - 208 = 0

$$\Rightarrow$$
 x² + 16x - 13x - 208 = 0

$$\{: 3 = 16 - 13 \text{ and } -208 = 16 \times (-13)\}$$

$$\Rightarrow x(x+16) - 13(x+16) = 0 \Rightarrow (x+16)(x-13) = 0$$

If x + 16 = 0, then x = -16 which is not possible as it is negative

If
$$x - 13 = 0$$
 then $x = 13$

Hence, Base = 13 cm and height = 13 + 3 = 16 cm.

5. Amit walks from his house to school at a speed of 3kmph and returns back with 4 kmph. If he takes 42 min for the whole journey, find the distance between his house and the school.

Solution:

Let the distance between school and house be *x km*.

Total time taken = 42 minutes =
$$\frac{42}{60}$$
 hours

According to given problem,

$$\frac{x}{3} + \frac{x}{4} = \frac{42}{60}$$

$$\Rightarrow \frac{4x + 3x}{12} = \frac{42}{60} \Rightarrow \frac{7x}{12} = \frac{42}{60} \Rightarrow x = \frac{42}{60} \times \frac{12}{7} = \frac{6}{5}$$

$$\left[\text{since, Time} = \frac{\text{Distance}}{\text{Speed}}\right]$$

Hence, distance between his house and school is $\frac{6}{5}$ km = 1.2 km.

6. A boy has x coins of 50 paise each, 2x coins of 25 paise each, 4x coins of 10 paise each and 8x coins of 5 paise each. Find the number of 5 paise coins if the value of all the coins is Rs 9.

Solution:

Number of 50 paise coins be x

Number of 25 paise coins be 2x

Number of 10 paise coins be 4x

Number of 5 paise coins be 8x

But, total value of coins = Rs 9

Now, according to the given problem

$$x \times 50 + 2x \times 25 + 4x \times 10 + 8x \times 5 = 9 \times 100$$

$$\Rightarrow 50x + 50x + 40x + 40x = 900 \Rightarrow 180x = 900$$

$$\Rightarrow x = \frac{900}{180} = 5$$

Hence, number of 5 paise coins = $8x = 8 \times 5 = 40$

7. Solve the following:

(i)
$$7x + 6y = 71, 5x - 8y = -23$$

(ii)
$$3x - y = 23, \frac{x}{3} + \frac{7}{4} = 4$$

(iii)
$$\frac{x-3}{4} = \frac{y-7}{2}$$
, $11x = 13y$

Solution:

(i)
$$7x + 6y = 71$$

$$5x - 8y = -23$$

Multiplying equation (1) by 4 and equation (2) by 3, we get

$$28x + 24y = 284$$

$$15x - 24y = -69$$

Adding equation (3) and equation (4), we get

$$43x = 215 \Rightarrow x = \frac{215}{43} = 5$$

Putting x = 5 in equation (1), we get

$$7 \times 5 + 6y = 71 \Rightarrow 35 + 6y = 71 \Rightarrow 6y = 71 - 35$$

$$\Rightarrow 6y = 36 \Rightarrow y = \frac{36}{6} = 6$$

An Innovative Learning Methodology by IlTians.

Hence, x = 5 and y = 6

(ii)
$$3x - y = 23$$

$$\frac{x}{3} + \frac{y}{4} = 4$$

$$\Rightarrow 12 \times \frac{x}{3} + 12 \times \frac{y}{4} = 12 \times 4$$

Multiplying both sides by 12, we get

$$4x + 3y = 48$$

Multiplying equation (1) by 3, we get

$$9x - 3y = 69$$

$$4x + 3y = 48$$

Adding equation (3) and equation (4), we get

$$9x - 3y = 69$$

$$4x - 3y = 48$$

$$\Rightarrow 13x = 117$$

$$\Rightarrow x = \frac{117}{13} = 9$$

Putting the value of x in equation (1), we get

$$3 \times 9 - y = 23 \Rightarrow 27 - y = 23 \Rightarrow -y = 23 - 27$$

$$\Rightarrow$$
 -y = -4 \Rightarrow y = 4

Hence, x = 9 and y = 4

(iii)
$$\frac{x-3}{4} = \frac{y-7}{2}$$

$$2(x - 3) = 4(y - 7)$$

By cross — multiplication, we get

$$2x - 6 = 4y - 28$$

$$\Rightarrow 2x - 4y = -28 + 6 \Rightarrow 2x - 4y = -22$$

$$11x = 13y \Rightarrow 11x - 13y = 0$$

Multiplying equation (1) by 11 and equation (2) by 2, we get

$$22x - 44y = -242$$

$$22x - 26y = 0$$

Subtraction equation (4) from (3), we get

$$22x - 44y = -242$$

$$22x - 26y = 0$$

$$\Rightarrow -18v = -242$$

Putting $y = \frac{121}{9}$ in equation (1), we get

$$2x - 4 \times \frac{121}{9} = -22$$

$$\Rightarrow 2x - \frac{484}{9} = -22 \Rightarrow 2x = -22 + \frac{484}{9}$$

$$\Rightarrow 2x = \frac{-198 + 484}{9} \Rightarrow 2x = \frac{286}{9}$$

$$\Rightarrow x = \frac{289}{2 \times 9} \Rightarrow x = \frac{143}{9} \Rightarrow x = 15\frac{8}{9}$$

Hence,
$$x = 15\frac{8}{9}$$
 and $y = 13\frac{4}{9}$

8. If 7x = 10y + 4 and 12x + 18y = 1, find the values of (4x + 6y) and (8y + x).

Solution:

$$7x = 10v + 4$$

$$\Rightarrow$$
 7x = 10 y = 4

$$12x + 18y = 1$$

Multiplying (1) by 9 and equation (2) by 5,

$$63x - 90y = 36$$

$$60x + 90y = 5$$

Adding equations (3) and (4), we get

$$63x - 90y = 36$$

$$60x + 90y = 5$$

$$\Rightarrow 123x = 41$$

$$\Rightarrow x = \frac{41}{123} = \frac{1}{3}$$

Putting the value of x in equation (1), we get

$$7 \times \frac{1}{3} - 10y = 4$$

$$\Rightarrow \frac{7}{3} - 10y = 4 \Rightarrow -10y = 4 - \frac{7}{3} = \frac{5}{3}$$

$$\Rightarrow y = -\frac{5}{3 \times 10} = -\frac{1}{6}$$

(i)
$$4x + 6y = 4 \times \frac{1}{3} + 6 \times \left(-\frac{1}{6}\right) = \frac{4}{3} - 1 = \frac{1}{3}$$
 and

(ii)
$$8y + x = 8 \times \left(-\frac{1}{6}\right) + \frac{1}{3} = \frac{-4}{3} + \frac{1}{3} = \frac{-3}{3} = -1$$

9. Of the two numbers, 4 times the smaller one is less than 3 times the larger one by 6. Also, the sum of the numbers is larger than 6 times their difference by 5. Find the numbers.

Solution:

Let the larger number be *x* and the smaller number be *y*

According to the given problem

$$3x - 4y = 6$$
 ... (1)

$$x + y - 6(x - y) = 5 \Rightarrow x + y - 6x + 6y = 5$$

$$\Rightarrow -5x + 7y = 5 \qquad \dots (2)$$

Multiplying equation (1) by and equation (2) by 4, we get

$$21x - 28y = 42$$
 ... (3)

$$-20x + 28y = 20$$
 ... (4)

Adding equation (3) and (4), we get

$$21x - 28y = 42$$

$$-20x + 28y = 20$$

$$\Rightarrow$$
 x = 62

Putting the value of x in equation (1), we get

$$3 \times 62 - 4y = 6$$

$$\Rightarrow 186 - 4y = 6 \Rightarrow -4y = 6 - 186 = -180 \Rightarrow y = \frac{-180}{-4} = 45$$

Hence, larger number = 62 and smaller number = 45

10. Five years ago, A's age was four times the age of B. Five years hence, A's age will be twice the age of B. Find their present ages.

Solution:

Let the present age of A be x years and present age of B be y years

5 years ago, age of
$$A = (x - 5)$$
 years

5 years ago, age of
$$B = (y - 5)$$
 years

$$\therefore x - 5 = 4(y - 5)$$

$$\Rightarrow x - 5 = 4y - 20$$

$$\Rightarrow$$
 x - 4y = -20 + 5

$$\Rightarrow x - 4y = -15 \qquad \dots (1)$$

5 years hence, age of A = (x + 5) years

5 years hence, age of B = (y + 5) years

$$\therefore x + 5 = 2(y + 5)$$
 [Given]

$$\Rightarrow x + 5 = 2y + 10$$

$$\Rightarrow$$
 x - 2y = 10 - 5 ... (2)

$$x - 2y = 5$$

Subtracting equation (2) from (1), we get

$$x - 4y = -15$$

$$x - 2y = 5$$

$$-2y = -20$$

$$\Rightarrow 2y = 20$$

$$\Rightarrow y = \frac{20}{2} = 10$$

Putting the value of y in equation (1), we get

$$x - 4 \times 10 = -15$$

$$\Rightarrow$$
 x = $-15 + 40$

$$\Rightarrow x = 25$$

Hence, the percentage age of A is 25 years and B is 10 years.

11. There are two examination halls A and B. If 12 pupils are sent from A to B, the number of pupils in each halls becomes the same. If 11 pupils are sent from B to A, then the number of pupils in A is double their number in B. Find the number of pupils in each room.

Solution:

Let number of pupils in examination hall A be *x* and number os pupils in examination hall be *y*.

According to the given problem,

$$x - 12 = y + 12$$

$$\Rightarrow$$
 x - y = 12 + 12 = 24

$$\Rightarrow$$
 x + 11 = 2(y - 11) \Rightarrow x + 11 = 2y - 22

$$\Rightarrow$$
 x - 2y = -22 - 11 = -33 ...(2)

Subtracting equation (2) from equation (1), we get

$$x - y = 24$$

$$x - 2y = -33$$

$$y = 57$$

Putting y = 57 in equation (1), we get

$$x - y = 24$$

$$x - 2y = -33$$

$$\Rightarrow$$
 y = 57

Putting y = 57 in equation (1), we get

$$\therefore x - 57 = 24$$

$$\Rightarrow$$
 x = 24 + 57 = 81

Hence, number of pupils in examination hall A = 81.

12. A man sold a chair and a table for Rs 2178, thereby making a profit of 12% on the chair and 16% on the table. By selling them for Rs 2154, he gains 16% on the chair and 12% on the table. Find the cost price of each.

Solution:

Let CP of chair be Rs x and CP of table be Rs y.

Case I:

Gain on chair = 12%

And gain on table = 16%

$$\therefore$$
 SP of chair = $\frac{x(100 + 12)}{100} = \frac{112}{100}x$

and SP of table =
$$\frac{y(100 + 16)}{100} = \frac{116}{100}y$$

Case II:

Gain on chair = 16% and gain on table = 12%

: SP of chair =
$$\frac{x(100 + 16)}{100} = \frac{116}{100}x$$

and SP of table =
$$\frac{y(100 + 12)}{100} = \frac{112}{100}y$$

According to the given problem,

$$\frac{112}{100}x + \frac{116}{100}y = 2178$$

$$\Rightarrow 112x + 116y = 217800$$
 ... (1)

and
$$\frac{116}{100}$$
x + $\frac{112}{100}$ y = 2154

$$\Rightarrow 116x + 112y = 215400$$
 ... (2)

Adding equation (1) and equation (2), we get

$$112x + 116y = 217800$$

$$116x + 112y = 215400$$

$$\Rightarrow$$
 228x + 228y = 433200

$$\Rightarrow x + y = 1900 \qquad \dots (3)$$

Subtracting equation (2) from equation (1), we get

$$112x + 116y = 217800$$

$$116x + 112y = 215400$$

$$-4x + 4y = 2400$$

$$\Rightarrow$$
 x - y = -600

... (4)

Adding equation (3) and equation (4), we get

$$x + y = 1900$$

$$x - y = -600$$

$$\Rightarrow 2x = 1300$$

$$\Rightarrow x = \frac{1300}{2} = 650$$

Subtracting equation (3) from (4), we get

$$x - y = -600$$

$$x + y = 1900$$

$$\Rightarrow$$
 $-2y = -2500$

$$\Rightarrow$$
 y = $\frac{-2500}{-2}$ = 1250

Hence, CP of chair is Rs 650 and CP of table is Rs 1250.

13. Draw the graph of the equation 4x + 3y + 6 = 0. From the graph, find:

- (i) y_1 , the value of y, when x = 6.
- (ii) y_2 , the value of y, when x = -6.

Solution:

$$4x + 3y + 6 = 0$$

$$\Rightarrow 4x = -3y - 6$$

$$\Rightarrow x = \frac{-(3y+6)}{4}$$

If
$$y = 2$$
, then

$$x = \frac{-(3 \times 2 + 6)}{4} = \frac{-12}{4} = -3$$

If
$$y = -2$$
, then

$$x = \frac{-[3 \times (-2) + 6]}{4} = \frac{-[-6 + 6]}{4} = 0$$

If
$$y = -6$$
, then

$$x = -\left[\frac{3 \times (-6) + 6}{4}\right] = \frac{-(-18 + 6)}{4}$$

$$=\frac{-(-12)}{4}=\frac{12}{4}=3$$

The table of 4x + 3y + 6 = 0

X	-3	0	3
у	2	-2	-6

Plotting the above points, we get the required graph.

From the graph,

- (i) If x == 6, then value of y, i. e., y_1 will be = -10
- (ii) If x = -6, then value of y, i. e., y_2 will be = 6.
- 14. Draw the graphs of 2x y 1 = 0 and 2x + y = 9 on the same axis. Write down the co-ordinates of the point of intersection of the two lines.

Solution:

$$2x - y - 1 = 0 \Rightarrow 2x = y + 1$$

$$\Rightarrow$$
 x = $\frac{y+1}{2}$

If
$$v = 1$$
, then

$$x = \frac{1+1}{2} = \frac{2}{2} = 1$$

If
$$y = 3$$
, then

$$x = \frac{3+1}{2} = \frac{4}{2} = 2$$

If
$$y = -1$$
, then

$$x = \frac{-1+1}{2} = 0$$

Table of 2x = y + 1

X	1	2	0
Y	1	3	-1

Again
$$2x + y = 9$$

$$\Rightarrow$$
 y = 9 - 2x

If
$$x = 1$$
, then $y = 9 - 2 \times 1 = 9 - 2 = 7$

If
$$x = 2$$
, then $y = 9 - 2 \times 2 = 9 - 4 = 5$

If
$$x = 3$$
, then $y = 9 - 2 \times 3 = 9 - 6 = 3$

Table of y = 9 - 2x

X	1	2	0
Y	1	3	-1

Plot the points given in above tables. We see that the graph of the lines nintersect each other at the point $(\frac{5}{2}, 4)$.

15. Find, graphically, the vertices of the triangle whose sides have the equations 2y - x = 8; 5y - x = 14 and y - 2x = 1 respectively. Take 1 cm = 1 unit on both the axes.

Solution:

$$2y - x = 8$$

$$\Rightarrow$$
 x = 2y - 8

If
$$y = 1$$
, then $x = 2 \times 1 - 8 = 2 - 8 = -6$

If
$$y = 3$$
, then $x = 2 \times 3 - 8 = 6 - 8 = -2$

If
$$y = 4$$
, then $x = 2 \times 4 - 8 = 8 - 8 = 0$

The table of x = 2y - 8 is

X	-6	-2	0
Y	1	3	4

Again,
$$5y - x = 14$$

$$\Rightarrow$$
 x = 5y - 14

The table of 5y - x = 14 is

X	-9	-4	1
Y	1	3	4

$$y - 2x = 1$$

$$\Rightarrow$$
 y = 1 + 2x

If
$$x = 2$$
, then

$$y = 1 + 2 \times 2 = 5$$

If
$$x = -2$$
, then

$$y = 1 + 2 \times (-2) = -3$$

If
$$x = 0$$
, then $y = 1 + 0 = 1$

The table of y = 1 + 2x is

X	2	-2	0
Y	5	-3	1

Plotting the points given in the above tables, we get the required graph. From the graph the vertices of the triangle are A (-4, 2), B (2, 5) and C (1, 3).