MATHEMATICS

[^0]Topic - Simultaneous Equation

1. Solve the following equations:
(i) $(x-4)(x+4)=(x+4)(x-7)+33$
(ii) $(x-2)(x+3)=x^{2}-4$
(iii) $(x-1)=\frac{3}{4}(x+1)-\frac{1}{2}$
(iv) $\frac{2}{3}(x-3)=1-\frac{5}{6}(3 x-4)$
(v) $\frac{(x-1)}{2}-\frac{(x+1)}{3}=5-x$

Solution:

(i) $(x-4)(x+4)=(x+4)(x-7)+33$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+4 \mathrm{x}-16=\mathrm{x}^{2}-7 \mathrm{x}+4 \mathrm{x}-28+33$
$\Rightarrow \mathrm{x}^{2}-16=\mathrm{x}^{2}-3 \mathrm{x}+5 \Rightarrow \mathrm{x}^{2}-\mathrm{x}^{2}+3 \mathrm{x}=5+16 \Rightarrow 3 \mathrm{x}=21$
Hence, $x=\frac{21}{3}=7$
(ii) $(x-2)(x+3)=x^{2}-4 \Rightarrow x^{2}+3 x-2 x-6=x^{2}-4$
$\Rightarrow x^{2}+x-6=x^{2}-4 \Rightarrow x^{2}+x-x^{2}=-4+6$
Hence, $x=2$
(iii) $(x-1)=\frac{3}{4}(x+1)-\frac{1}{2}$

Multiplying both sides by 4 , we get
$4(x-1)=\frac{3}{4}(x+1) \times 4-\frac{1}{2} \times 4$
$\Rightarrow 4 \mathrm{x}-4=3 \mathrm{x}+3-2$
$\Rightarrow 4 \mathrm{x}-3 \mathrm{x}=3-2+4$
Hence, $x=5$
(iv) $\frac{2}{3}(x-3)=1-\frac{5}{6}(3 x-4)$

Multiplying both sides by 6 , we get

$$
\begin{aligned}
& 6 \times \frac{2}{3}(x-3)=1 \times 6-6 \times \frac{5}{6}(3 x-4) \Rightarrow 4(x-3)=6-5(3 x-4) \\
& \Rightarrow 4 x-12=6-15 x+20 \Rightarrow 4 x+15 x=6+20+12 \\
& \Rightarrow 19 x=38
\end{aligned}
$$

Hence, $x=\frac{38}{19}=2$
(v) $\frac{x-1}{2}-\frac{x+1}{3}=5-x$

Multiplying both sides by 6 , we get

$$
\begin{aligned}
& \Rightarrow 6 \times \frac{(x-1)}{2}-6 \times \frac{(x+1)}{3}=6 \times(5-x) \\
& \Rightarrow 3(x-1)-2(x+1)=6(5-x) \Rightarrow 3 x-3-2 x-2=30-6 x \\
& \Rightarrow 3 x-2 x+6 x=30+3+2 \\
& \Rightarrow 7 x=35 \Rightarrow x=\frac{35}{7} \Rightarrow x=5
\end{aligned}
$$

Hence, $\mathrm{x}=5$
2. Find he value of a, if $x=0.5$ is a solution of equation $\mathrm{ax}^{2}+(a-1) x+3=a$.

Solution:

$$
\begin{aligned}
& \mathrm{x}=0.5=\frac{1}{2} \quad \text { [Given] } \\
& \mathrm{x}=\frac{1}{2} \text { is a solution of the given equation } \\
& \mathrm{ax}^{2}+(\mathrm{a}-1) \mathrm{x}+3=\mathrm{a}
\end{aligned}
$$

Putting the value of x in the given equation, we have

$$
a\left(\frac{1}{2}\right)^{2}+(a-1) \times \frac{1}{3}+3=a \Rightarrow \frac{a}{4}+\frac{a-1}{2}+3=a
$$

Multiplying both sides by 4 , we get
$\Rightarrow 4 \times \frac{\mathrm{a}}{4}+\frac{4 \times(\mathrm{a}-1)}{2}+3 \times 4=4 \mathrm{a}$
$\Rightarrow \mathrm{a}+2 \mathrm{a}-2+12=4 \mathrm{a} \Rightarrow \mathrm{a}+2 \mathrm{a}-4 \mathrm{a}=2-12$
$\Rightarrow-\mathrm{a}=-10$
Hence, $\mathrm{a}=10$
3. In a class there are x seats. If each student occupies one seat, 9 students remain standing and if two students occupy one seat, 7 seats are left empty. Find the number of seats in the class.

Solution:

Number of seats $=\mathrm{x}$
[Given]
Case I: When I student occupy 1 seat 9 students are left standing.
Thus number of students $=x+9$

Case II: When 2 students occupy 1 seat, 7 seats are left.
Thus number of seats occupied $=x-7$
Number of students $=2(x-7)$
According to the given problem,
$x+9=2(x-7) \Rightarrow x+9=2 x-14 \Rightarrow x-2 x=-14-9$
$\Rightarrow-\mathrm{x}=-23 \Rightarrow \mathrm{x}=23$
Hence, number of seats are 23.
4. The height of a triangle is 3 cm more than its base. If the area of the triangle is $104 \mathrm{~cm}^{2}$, find the lengths of its base and height.

Solution:

Let base b of a triangle (b) be x cm then height (h) be $(\mathrm{x}+3) \mathrm{cm}$ and area of triangle
(A) $=104 \mathrm{~cm}^{2}$

According to the given problem
$\frac{1}{2} \mathrm{~b} \times \mathrm{h}=\mathrm{A} \Rightarrow \frac{1}{2} \mathrm{x} \times(\mathrm{x}+3)=104$
$\Rightarrow \mathrm{x}(\mathrm{x}+3)=208 \Rightarrow \mathrm{x}^{2}+3 \mathrm{x}-208=0$
$\Rightarrow \mathrm{x}^{2}+16 \mathrm{x}-13 \mathrm{x}-208=0 \quad\{\because 3=16-13$ and $-208=16 \times(-13)\}$
$\Rightarrow \mathrm{x}(\mathrm{x}+16)-13(\mathrm{x}+16)=0 \Rightarrow(\mathrm{x}+16)(\mathrm{x}-13)=0$
If $x+16=0$, then $x=-16$ which is not possible as it is negative
If $x-13=0$ then $x=13$
Hence, Base $=13 \mathrm{~cm}$ and height $=13+3=16 \mathrm{~cm}$.
5. Amit walks from his house to school at a speed of 3 kmph and returns back with 4 kmph . If he takes 42 min for the whole journey, find the distance between his house and the school.

Solution:

Let the distance between school and house be $x \mathrm{~km}$.
Total time taken $=42$ minutes $=\frac{42}{60}$ hours
According to given problem,

$$
\begin{array}{ll}
\frac{x}{3}+\frac{x}{4}=\frac{42}{60} & \quad\left[\text { since, Time }=\frac{\text { Distance }}{\text { Speed }}\right] \\
\Rightarrow \frac{4 x+3 x}{12}=\frac{42}{60} \Rightarrow \frac{7 x}{12}=\frac{42}{60} \Rightarrow x=\frac{42}{60} \times \frac{12}{7}=\frac{6}{5} &
\end{array}
$$

Hence, distance between his house and school is $\frac{6}{5} \mathrm{~km}=1.2 \mathrm{~km}$.
6. A boy has x coins of 50 paise each, $2 x$ coins of 25 paise each, $4 x$ coins of 10 paise each and $8 x$ coins of 5 paise each. Find the number of 5 paise coins if the value of all the coins is Rs 9 .

Solution:

Number of 50 paise coins be x
Number of 25 paise coins be $2 x$
Number of 10 paise coins be $4 x$
Number of 5 paise coins be $8 x$
But, total value of coins = Rs 9
Now, according to the given problem
$\mathrm{x} \times 50+2 \mathrm{x} \times 25+4 \mathrm{x} \times 10+8 \mathrm{x} \times 5=9 \times 100$
$\Rightarrow 50 \mathrm{x}+50 \mathrm{x}+40 \mathrm{x}+40 \mathrm{x}=900 \Rightarrow 180 \mathrm{x}=900$
$\Rightarrow \mathrm{x}=\frac{900}{180}=5$
Hence, number of 5 paise coins $=8 \mathrm{x}=8 \times 5=40$
7. Solve the following :
(i) $7 x+6 y=71,5 x-8 y=-23$
(ii) $3 x-y=23, \frac{x}{3}+\frac{7}{4}=4$
(iii) $\frac{x-3}{4}=\frac{y-7}{2}, 11 x=13 y$

Solution:

(i) $7 x+6 y=71$
$5 x-8 y=-23$
Multiplying equation (1) by 4 and equation (2) by 3 , we get

$$
\begin{equation*}
28 x+24 y=284 \tag{3}
\end{equation*}
$$

$15 x-24 y=-69$
Adding equation (3) and equation (4), we get
$43 \mathrm{x}=215 \Rightarrow \mathrm{x}=\frac{215}{43}=5$
Putting $x=5$ in equation (1), we get
$7 \times 5+6 y=71 \Rightarrow 35+6 y=71 \Rightarrow 6 y=71-35$
$\Rightarrow 6 y=36 \Rightarrow y=\frac{36}{6}=6$

Hence, $x=5$ and $y=6$
(ii) $3 x-y=23$
$\frac{x}{3}+\frac{y}{4}=4$
$\Rightarrow 12 \times \frac{\mathrm{x}}{3}+12 \times \frac{\mathrm{y}}{4}=12 \times 4$
Multiplying both sides by 12 , we get
$4 x+3 y=48$
Multiplying equation (1) by 3 , we get
$9 x-3 y=69$
$4 x+3 y=48$
Adding equation (3) and equation (4), we get
$9 x-3 y=69$
$4 \mathrm{x}-3 \mathrm{y}=48$
$\Rightarrow 13 \mathrm{x}=117$
$\Rightarrow \mathrm{x}=\frac{117}{13}=9$
Putting the value of x in equation (1), we get
$3 \times 9-y=23 \Rightarrow 27-y=23 \Rightarrow-y=23-27$
$\Rightarrow-y=-4 \Rightarrow y=4$
Hence, $x=9$ and $y=4$
(iii) $\frac{x-3}{4}=\frac{y-7}{2}$
$2(x-3)=4(y-7)$
By cross - multiplication, we get

$$
\begin{align*}
& 2 x-6=4 y-28 \\
& \Rightarrow 2 x-4 y=-28+6 \Rightarrow 2 x-4 y=-22 \tag{1}\\
& 11 x=13 y \Rightarrow 11 x-13 y=0 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 11 and equation (2) by 2 , we get

$$
\begin{equation*}
22 x-44 y=-242 \tag{3}
\end{equation*}
$$

$22 x-26 y=0$
Subtraction equation (4) from (3), we get

$$
\begin{aligned}
& 22 x-44 y=-242 \\
& 22 x-26 y=0 \\
& \Rightarrow-18 y=-242
\end{aligned}
$$

MATHEMATICS

$$
\begin{aligned}
& \text { Putting } y=\frac{121}{9} \text { in equation (1), we get } \\
& 2 x-4 \times \frac{121}{9}=-22 \\
& \Rightarrow 2 x-\frac{484}{9}=-22 \Rightarrow 2 x=-22+\frac{484}{9} \\
& \Rightarrow 2 x=\frac{-198+484}{9} \Rightarrow 2 x=\frac{286}{9} \\
& \Rightarrow x=\frac{289}{2 \times 9} \Rightarrow x=\frac{143}{9} \Rightarrow x=15 \frac{8}{9} \\
& \text { Hence, } x=15 \frac{8}{9} \text { and } y=13 \frac{4}{9}
\end{aligned}
$$

[^1] Ansians.
9. Of the two numbers, 4 times the smaller one is less than 3 times the larger one by 6 . Also, the sum of the numbers is larger than 6 times their difference by 5 . Find the numbers.

Solution:

Let the larger number be x and the smaller number be y
According to the given problem
$3 x-4 y=6$
$x+y-6(x-y)=5 \Rightarrow x+y-6 x+6 y=5$
$\Rightarrow-5 x+7 y=5$
Multiplying equation (1) by and equation (2) by 4 , we get
$21 x-28 y=42$
$-20 x+28 y=20$
Adding equation (3) and (4), we get
$21 \mathrm{x}-28 \mathrm{y}=42$
$-20 x+28 y=20$
$\Rightarrow \mathrm{x}=62$
Putting the value of x in equation (1), we get
$3 \times 62-4 y=6$
$\Rightarrow 186-4 y=6 \Rightarrow-4 y=6-186=-180 \Rightarrow y=\frac{-180}{-4}=45$
Hence, larger number $=62$ and smaller number $=45$
10. Five years ago, A's age was four times the age of B. Five years hence, A's age will be twice the age of B. Find their present ages.

Solution:

Let the present age of A be x years and present age of B be y years
5 years ago, age of $A=(x-5)$ years
5 years ago, age of $B=(y-5)$ years
$\therefore \mathrm{x}-5=4(\mathrm{y}-5)$
$\Rightarrow \mathrm{x}-5=4 \mathrm{y}-20$
$\Rightarrow x-4 y=-20+5$
$\Rightarrow \mathrm{x}-4 \mathrm{y}=-15$
5 years hence, age of $A=(x+5)$ years
5 years hence, age of $B=(y+5)$ years
$\therefore \mathrm{x}+5=2(\mathrm{y}+5)$
[Given]
$\Rightarrow \mathrm{x}+5=2 \mathrm{y}+10$
$\Rightarrow \mathrm{x}-2 \mathrm{y}=10-5$
$x-2 y=5$
Subtracting equation (2) from (1), we get
$x-4 y=-15$
$x-2 y=5$
$-2 \mathrm{y}=-20$
$\Rightarrow 2 \mathrm{y}=20$
$\Rightarrow \mathrm{y}=\frac{20}{2}=10$
Putting the value of y in equation (1), we get
$x-4 \times 10=-15$
$\Rightarrow \mathrm{x}=-15+40$
$\Rightarrow \mathrm{x}=25$
Hence, the percentage age of A is 25 years and B is 10 years.
11. There are two examination halls A and B. If 12 pupils are sent from A to B, the number of pupils in each halls becomes the same. If 11 pupils are sent from B to A, then the number of pupils in A is double their number in B. Find the number of pupils in each room.

Solution:

Let number of pupils in examination hall A be x and number os pupils in examination hall be y. According to the given problem,
$\mathrm{x}-12=\mathrm{y}+12$
$\Rightarrow \mathrm{x}-\mathrm{y}=12+12=24$
$\Rightarrow x+11=2(y-11) \Rightarrow x+11=2 y-22$
$\Rightarrow \mathrm{x}-2 \mathrm{y}=-22-11=-33$
Subtracting equation (2) from equation (1), we get
$x-y=24$
$x-2 y=-33$
$y=57$
Putting $y=57$ in equation (1), we get
$x-y=24$
$x-2 y=-33$
$\Rightarrow \mathrm{y}=57$

Putting $y=57$ in equation (1), we get
$\therefore \mathrm{x}-57=24$
$\Rightarrow \mathrm{x}=24+57=81$
Hence, number of pupils in examination hall $\mathrm{A}=81$.
12. A man sold a chair and a table for Rs 2178 , thereby making a profit of 12% on the chair and 16% on the table. By selling them for Rs 2154, he gains 16% on the chair and 12% on the table. Find the cost price of each.

Solution:

Let CP of chair be Rs x and CP of table be Rs y.
Case I:
Gain on chair $=12 \%$
And gain on table $=16 \%$
\therefore SP of chair $=\frac{\mathrm{x}(100+12)}{100}=\frac{112}{100} \mathrm{x}$
and SP of table $=\frac{y(100+16)}{100}=\frac{116}{100} y$
Case II :
Gain on chair $=16 \%$ and gain on table $=12 \%$
\therefore SP of chair $=\frac{\mathrm{x}(100+16)}{100}=\frac{116}{100} \mathrm{x}$
and SP of table $=\frac{y(100+12)}{100}=\frac{112}{100} y$
According to the given problem,
$\frac{112}{100} x+\frac{116}{100} y=2178$
$\Rightarrow 112 \mathrm{x}+116 \mathrm{y}=217800$
and $\frac{116}{100} x+\frac{112}{100} y=2154$
$\Rightarrow 116 \mathrm{x}+112 \mathrm{y}=215400$
Adding equation (1) and equation (2), we get
$112 \mathrm{x}+116 \mathrm{y}=217800$
$116 x+112 y=215400$
$\Rightarrow 228 \mathrm{x}+228 \mathrm{y}=433200$
$\Rightarrow \mathrm{x}+\mathrm{y}=1900$

Subtracting equation (2) from equation (1), we get
$112 \mathrm{x}+116 \mathrm{y}=217800$
$116 x+112 y=215400$
$-4 x+4 y=2400$
$\Rightarrow \mathrm{x}-\mathrm{y}=-600$
Adding equation (3) and equation (4), we get
$x+y=1900$
$x-y=-600$
$\Rightarrow 2 \mathrm{x}=1300$
$\Rightarrow \mathrm{x}=\frac{1300}{2}=650$
Subtracting equation (3) from (4), we get
$x-y=-600$
$x+y=1900$
$\Rightarrow-2 y=-2500$
$\Rightarrow \mathrm{y}=\frac{-2500}{-2}=1250$
Hence, CP of chair is Rs 650 and CP of table is Rs 1250.
13. Draw the graph of the equation $4 x+3 y+6=0$. From the graph, find:
(i) y_{1}, the value of y, when $x=6$.
(ii) y_{2}, the value of y, when $x=-6$.

Solution:

$4 x+3 y+6=0$
$\Rightarrow 4 \mathrm{x}=-3 \mathrm{y}-6$
$\Rightarrow x=\frac{-(3 y+6)}{4}$
If $y=2$, then
$x=\frac{-(3 \times 2+6)}{4}=\frac{-12}{4}=-3$
If $y=-2$, then
$x=\frac{-[3 \times(-2)+6]}{4}=\frac{-[-6+6]}{4}=0$
If $y=-6$, then

MATHEMATICS

$x=-\left[\frac{3 \times(-6)+6}{4}\right]=\frac{-(-18+6)}{4}$
$=\frac{-(-12)}{4}=\frac{12}{4}=3$
The table of $4 x+3 y+6=0$

x	-3	0	3
y	2	-2	-6

Plotting the above points, we get the required graph.
From the graph,
(i) If $x==6$, then value of y, i. e., y_{1} will be $=-10$
(ii) If $x=-6$, then value of y, i.e., y_{2} will be $=6$.
14. Draw the graphs of $2 x-y-1=0$ and $2 x+y=9$ on the same axis. Write down the co-ordinates of the point of intersection of the two lines.

Solution:

$2 \mathrm{x}-\mathrm{y}-1=0 \Rightarrow 2 \mathrm{x}=\mathrm{y}+1$
$\Rightarrow x=\frac{y+1}{2}$
If $\mathrm{y}=1$, then
$x=\frac{1+1}{2}=\frac{2}{2}=1$
If $y=3$, then
$x=\frac{3+1}{2}=\frac{4}{2}=2$
If $y=-1$, then
$\mathrm{x}=\frac{-1+1}{2}=0$
Table of $2 x=y+1$

X	1	2	0
Y	1	3	-1

Again $2 \mathrm{x}+\mathrm{y}=9$
$\Rightarrow \mathrm{y}=9-2 \mathrm{x}$
If $x=1$, then $y=9-2 \times 1=9-2=7$
If $x=2$, then $y=9-2 \times 2=9-4=5$
If $x=3$, then $y=9-2 \times 3=9-6=3$

MATHEMATICS

Table of $y=9-2 x$

X	1	2	0
Y	1	3	-1

Plot the points given in above tables. We see that the graph of the lines nintersect each other at the point $\left(\frac{5}{2}, 4\right)$.
15. Find, graphically, the vertices of the triangle whose sides have the equations $2 y-x=8 ; 5 y-x=14$ and y $-2 \mathrm{x}=1$ respectively. Take $1 \mathrm{~cm}=1$ unit on both the axes.

Solution:

$2 y-x=8$
$\Rightarrow \mathrm{x}=2 \mathrm{y}-8$
If $y=1$, then $x=2 \times 1-8=2-8=-6$
If $y=3$, then $x=2 \times 3-8=6-8=-2$
If $y=4$, then $x=2 \times 4-8=8-8=0$
The table of $x=2 y-8$ is

X	-6	-2	0
Y	1	3	4

Again, $5 \mathrm{y}-\mathrm{x}=14$
$\Rightarrow \mathrm{x}=5 \mathrm{y}-14$
The table of $5 y-x=14$ is

X	-9	-4	1
Y	1	3	4

$y-2 x=1$
$\Rightarrow \mathrm{y}=1+2 \mathrm{x}$

If $x=2$, then
$y=1+2 \times 2=5$
If $x=-2$, then
$y=1+2 \times(-2)=-3$
If $\mathrm{x}=0$, then $\mathrm{y}=1+0=1$
The table of $\mathrm{y}=1+2 \mathrm{x}$ is

X	2	-2	0
Y	5	-3	1

Assisted Practice I. Expert Guidance I Personalized Insights
An Innovative Learning Methodology by IITians.
Plotting the points given in the above tables, we get the required graph. From the graph the vertices of the triangle are $\mathrm{A}(-4,2), \mathrm{B}(2,5)$ and $\mathrm{C}(1,3)$.

[^0]: Class - IX

[^1]: