1. In $\triangle A B C$, obtuse angled at $B$, if $A D$ is perpendicular to $C B$ produced, prove that: ${A C^{2}=A B^{2}+~+~+~}_{\text {a }}$ $B C^{2}+2 B C \times B D$

## Solution:

In $\triangle \mathrm{ADB}, \angle \mathrm{D}=90^{\circ}$
$\therefore \mathrm{AD}^{2}+\mathrm{DB}^{2}=\mathrm{AB}^{2}$
[By Pythagoras theorem]
In $\triangle \mathrm{ADC}, \angle \mathrm{D}=90^{\circ}$

$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
[By Pythagoras theorem]
$=A D^{2}+(D B+B C)^{2}$
$=\mathrm{AD}^{2}+\mathrm{DB}^{2}+\mathrm{BC}^{2}+2 \mathrm{DB} \times \mathrm{BC}$
$=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \times \mathrm{BD}$
[Using (i)]
Hence, $A C^{2}=A B^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \times \mathrm{BD}$
2. In $\triangle A B C$, if $A D$ is the median, then prove that $A B^{2}+A C^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

## Solution:

DrawAE $\perp \mathrm{BC}$. Then, $\angle \mathrm{AED}=90^{\circ}$
$\therefore \angle \mathrm{ADE}<90^{\circ}$
$\Rightarrow \angle \mathrm{ADB}$ is an obtuse angle
thus, $\angle A D B$ is obtuse and $\angle A D E$ is acute.
now, $\triangle \mathrm{ABD}$ is obtuse-angled at D and $\mathrm{AE} \perp \mathrm{BD}$ produced.

$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{DE}$
Also, $\triangle \mathrm{ADC}$ is acute-angled at D and $\mathrm{AE} \perp \mathrm{DC}$
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{DE}$
$=\mathrm{AD}^{2}+\mathrm{BD}^{2}-2 \mathrm{BD} \times \mathrm{DE}$
$\ldots$ (ii) $\quad[\because \mathrm{DC}=\mathrm{BD}]$
Adding (i) and (ii), we get
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+2 \mathrm{BD}^{2}$
$=2 \mathrm{AD}^{2}+2\left(\frac{1}{2} \mathrm{BC}^{2}\right)$
$=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$
Hence, $A B^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$
3. A ladder reached a window which is 15 metres above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 8 metre high. Find the width of the street, if the length of the ladder is 17 metres.
Solution:
According to the given statement, the figure will be as shown alongside. In the figure, PQ is the width of the street, PM and QN are two building, A is the foot of the ladder, AB Is the first position of the ladder and $A B^{\prime}$ is its second position.

Clearly, $\mathrm{AB}=\mathrm{AB}^{\prime}=17 \mathrm{~m}, \mathrm{~PB}=15 \mathrm{~m}$ and $\mathrm{QB}^{\prime}=8 \mathrm{~m}$
In $\triangle \mathrm{PAB}, \mathrm{PA}^{2}+\mathrm{PB}^{2}=\mathrm{AB}^{2}$
$\Rightarrow \mathrm{PA}^{2}+15^{2}=17^{2}$
i. e. $\mathrm{PA}^{2}=17^{2}-15^{2}=289-225=64 \Rightarrow \mathrm{PA}=\sqrt{64} \mathrm{~m}=8 \mathrm{~m}$

In $\triangle \mathrm{QAB}^{\prime}, \mathrm{QA}^{2}+\left(\mathrm{QB}^{\prime}\right)^{2}=\left(\mathrm{AB}^{\prime}\right)^{2}$
$\Rightarrow \mathrm{QA}^{2}+8^{2}=17^{2}$

i. e. $Q A^{2}=17^{2}-8^{2}=289-64=225 \Rightarrow Q A=\sqrt{225} m=15 \mathrm{~m}$
$\therefore$ The width of the street $=P Q$
$=P A+Q A=8 \mathrm{~m}+15 \mathrm{~m}=23 \mathrm{~m}$
4. $A B C$ is an equilateral triangle; $P$ is a point in $B C$ such that $B P: P C=2: 1$.

Prove that: $\mathbf{9 A P}^{2}=7 \mathrm{AB}^{2}$

## Solution:



According to the given statement, the figure will be as shown alongside.
Draw AD perpendicular to $B C$. In order to find $A P$, which is a side of right $\triangle A D P$;
find DP and AD.
To find DP:
Given: BP : $\mathrm{PC}=2: 1$
$\Rightarrow \mathrm{BP}=\frac{2}{3} \mathrm{BC}=\frac{2}{3} \mathrm{AB} \quad[\because \mathrm{AB}=\mathrm{BC}=\mathrm{AC}]$
$\mathrm{AD} \perp \mathrm{BC} \Rightarrow \mathrm{BD}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{AB}$
$\therefore \mathrm{DP}=\mathrm{BP}-\mathrm{BD}$

$=\frac{2}{3} \mathrm{AB}-\frac{1}{2} \mathrm{AB}=\frac{4 \mathrm{AB}-3 \mathrm{AB}}{6}=\frac{\mathrm{AB}}{6}$

To find $A D$ : In right $\triangle A B D$,
$\mathrm{AD}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2} \Rightarrow \mathrm{AD}^{2}+\left(\frac{\mathrm{AB}}{2}\right)^{2}=\mathrm{AB}^{2} \quad\left[\therefore \mathrm{BD}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{AB}\right]$
$\Rightarrow \mathrm{AD}^{2}=\mathrm{AB}^{2}-\frac{\mathrm{AB}^{2}}{4}=\frac{3 \mathrm{AB}^{2}}{4}$
Now, in right $\triangle \mathrm{ADP}$,
$A P^{2}=A D^{2}+D P^{2} \Rightarrow A P^{2}=\frac{3 A B^{2}}{4}+\left(\frac{A B}{6}\right)^{2}$
i. e. $\mathrm{AP}^{2}=\frac{3 \mathrm{AB}^{2}}{4}+\frac{\mathrm{AB}^{2}}{36}=\frac{27 \mathrm{AB}^{2}+\mathrm{AB}^{2}}{36}$
i.e. $A P^{2}=\frac{28 A B^{2}}{36}=\frac{7 A B^{2}}{9} \Rightarrow 9 A^{2}=7 A B^{2}$
5. ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}=20 \mathrm{~cm}$ and $\mathrm{BC}=\mathbf{2 4} \mathbf{c m}$. PQRS is a rectangle drawn inside the isosceles triangle. Given $P Q=S R=y \mathbf{c m}$ and $P S=Q R=2 x$ cm.
Prove that: $y=16-\frac{4 x}{3}$


## Solution:

In an isosceles triangle, the perpendicular form vertex bisects the base.
$\therefore \mathrm{BD}=\mathrm{CD}=\frac{24}{2} \mathrm{~cm}=12 \mathrm{~cm}$
By ASA, $\triangle \mathrm{PBQ} \equiv \Delta \mathrm{SCR}$

$\Rightarrow B Q=C R$
$\therefore \mathrm{BD}-\mathrm{BQ}=\mathrm{CD}-\mathrm{CR} \Rightarrow \mathrm{DQ}=\mathrm{DR}=\frac{2 \mathrm{x}}{2} \mathrm{~cm}=\mathrm{xcm}$ and,

$$
\mathrm{BQ}=\mathrm{CR}=(12-\mathrm{x}) \mathrm{cm}
$$

In right $\triangle \mathrm{ABD}, \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}$
[Using Pythagoras theorem]
$=20^{2}-12^{2}=256$
$\Rightarrow A D=16 \mathrm{~cm}$
Since, $P Q$ and $A D$ both are perpendicular to the same line $B D$;

therefore, PQ is parallel to AD .
In $\triangle A B D, P Q \| A D$
$\Rightarrow \frac{\mathrm{PQ}}{\mathrm{AD}}=\frac{\mathrm{BQ}}{\mathrm{BD}} \Rightarrow \frac{\mathrm{y}}{16}=\frac{12-\mathrm{x}}{12}$
$\Rightarrow \mathrm{y}=16-\frac{4 \mathrm{x}}{3}$
Hence proved
6. Prove that the sum of the squares on the diagonals of a parallelogram is equal to the sum of the squares on its sides.

## Solution:

According to the given statement, the figure will be as shown alongside.
Required to prove:
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}$
Draw AN $\perp \mathrm{CD}$ (Produced) and $\mathrm{DM} \perp \mathrm{AB}$
In right triangle ANC,

$\mathrm{AC}^{2}=\mathrm{AN}^{2}+\mathrm{NC}^{2}$
$=\mathrm{AN}^{2}+(\mathrm{CD}+\mathrm{DN})^{2}$
$=\mathrm{AN}^{2}+\mathrm{CD}^{2}+\mathrm{DN}^{2}+2 \mathrm{CD} \times \mathrm{DN}$
$=\left(\mathrm{AN}^{2}+\mathrm{DN}^{2}\right)+\mathrm{CD}^{2}+2 \mathrm{CD} \times \mathrm{DN}$
$=\mathrm{AD}^{2}+\mathrm{CD}^{2}+2 \mathrm{CD} \times \mathrm{DN}$
In right $\triangle \mathrm{DMB}$,
$\mathrm{BD}^{2}=\mathrm{DM}^{2}+\mathrm{MB}^{2}$
$=\mathrm{DM}^{2}+(\mathrm{AB}-\mathrm{AM})^{2}$

$=\mathrm{DM}^{2}+\mathrm{AB}^{2}+\mathrm{AM}^{2}-2 \mathrm{AB} \times \mathrm{AM}$
$=\left(\mathrm{DM}^{2}+\mathrm{AM}^{2}\right)+\mathrm{AB}^{2}-2 \mathrm{CD} \times \mathrm{DN}$
$=A D^{2}+\mathrm{AB}^{2}-2 \mathrm{CD} \times \mathrm{DN}$
On adding equations (i) and (ii) we get
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}+\mathrm{AB}^{2}$
$=A B^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}$
Hence proved
7. A point 0 in the interior of a rectangle $A B C D$ is joined with each of the vertices $A, B, C$ and $D$.
prove that: $O A^{2}+O C^{2}=O B^{2}+O D^{2}$.

## Solution:

Through 0, draw EOF \| AB. Then, ABFE is a rhombus.
In right triangles OEA and OFC, we have:

$O A^{2}=O E^{2}+\mathrm{AE}^{2}$
$O C^{2}=O F^{2}+C F^{2}$
$\therefore \mathrm{OA}^{2}+\mathrm{OC}^{2}=\mathrm{OE}^{2}+\mathrm{OF}^{2}+\mathrm{AE}^{2}+\mathrm{CF}^{2}$
Again, in right triangles OFB and OED, we have: $\mathrm{OB}^{2}=\mathrm{OF}^{2}+\mathrm{BF}^{2}$
$\mathrm{OD}^{2}=\mathrm{OE}^{2}+\mathrm{DE}^{2}$
$\therefore \mathrm{OB}^{2}+\mathrm{OD}^{2}=\mathrm{OF}^{2}+\mathrm{OE}^{2}+\mathrm{BF}^{2}+\mathrm{DE}^{2}$
$=\mathrm{OE}^{2}+\mathrm{OF}^{2}+\mathrm{AE}^{2}+\mathrm{CF}^{2}$
From (i) and (ii), we get
$O A^{2}+O C^{2}=O B^{2}+O D^{2}$
8. In a rhombus ABCD , prove that: $\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$

## Solution:

Let ABCD be a rhombus, whose diagonals AC and BD intersects at 0 . we know that the diagonals of a rhombus bisect each other at right angles.
$\therefore \angle A O B=\angle B O C=\angle C O D=\angle A O D=90^{\circ}$ and $A O=O C, B O=O D$
From right $\triangle A O B$, we have $A B^{2}=O A^{2}+O B^{2}$
$=\left(\frac{1}{2} \mathrm{AC}\right)^{2}+\left(\frac{1}{2} \mathrm{BD}\right)^{2}=\frac{1}{4} \mathrm{AC}^{2}+\frac{1}{4} \mathrm{BD}^{2}$
$\Rightarrow 4 \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Similarly, $4 \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$

$4 \mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
$4 \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
$\therefore 4\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}\right)=4\left(\mathrm{AC}^{2}+\mathrm{BD}^{2}\right)$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
9. In a $\triangle A B C$, right angled at $C$, if $P$ and $Q$ be the mid-points of $C A$ and $C B$ respectively, prove that:
(i) $4 \mathrm{AQ}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2}$
(ii) $4 \mathrm{BP}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2}$
(iii) $4\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=5 \mathrm{AB}^{2}$

Solution:
(i) From right $\triangle A C Q$, we have


$$
\begin{aligned}
& \mathrm{AQ}^{2}=\mathrm{AC}^{2}+\mathrm{QC}^{2} \\
& =\mathrm{AC}^{2}+\left(\frac{1}{2} \mathrm{BC}\right)^{2}=\mathrm{AC}^{2}+\frac{1}{4} \mathrm{AC}^{2} \\
& \Rightarrow 4 \mathrm{AQ}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

(ii) From right $\triangle \mathrm{PCB}$, we have $\mathrm{BP}^{2}=\mathrm{BC}^{2}+\mathrm{PC}^{2}$

$$
\begin{aligned}
& =\mathrm{BC}^{2}+\left(\frac{1}{2} \mathrm{AC}\right)^{2}=\mathrm{BC}^{2}+\frac{1}{4} \mathrm{AC}^{2} \\
& \Rightarrow 4 \mathrm{BP}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2}
\end{aligned}
$$

(iii) Adding (i) and (ii) we get

$$
\begin{aligned}
& 4\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=5\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right) \\
& =5 \mathrm{AB}^{2} \quad\left[\because A C^{2}+B C^{2}=A B^{2}\right] \\
& \text { Hence, } 4\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=5 \mathrm{AB}^{2}
\end{aligned}
$$

10. In $\triangle A B C, \angle A=90^{\circ}$ and $A D \perp B C$. Prove that: $A D^{\mathbf{2}}=B D \times D C$.

## Solution:

From right $\triangle \mathrm{ADB}$, we have,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
From right $\triangle \mathrm{ADC}$, we have
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
From right $\triangle \mathrm{BAX}$, we have
$\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$


Adding (i)and (ii), we get

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{DC}^{2} \\
& \Rightarrow \mathrm{BC}^{2}=2 \mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{DC}^{2} \\
& \Rightarrow(\mathrm{BD}+\mathrm{DC})^{2}=2 \mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{DC}^{2} \\
& \Rightarrow \mathrm{BD}^{2}+\mathrm{DC}^{2}+2 \mathrm{BD} \times \mathrm{DC}=2 \mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{DC}^{2} \\
& \Rightarrow \mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{DC}
\end{aligned}
$$

