Sample Question Paper (TERM - I)					
Solutions					
	Section - A				
Ans. 1	(c) Remove the layer of magnesium carbonate from the ribbon surface.				
	Explanation: Before burning in air, the magnesium ribbon is cleaned by rubbing with				
	sandpaper. This is done to remove the protective layer of basic magnesium carbonate				
	$(Mg(CO_3)_2)$ from the surface of ribbon.				
Ans. 2	(a) 18				
	Explanation: In the neutral atom of an element,				
	no. of protons = no. of electrons				
	∴no. of electrons in element A= 19				
	Now, in A+ ion, the positive charge is acquired by the loss of one electron.				
	\therefore no. of electrons in ion A+ = 19-1=18				
Ans. 3	(b) Citric acid				
	Explanation: Citric acid is one of the forms of acid. It is a weak organic acid. Fruits which				
	are citruses like lemon, oranges, and mango contain citric acid in them.				
Ans. 4	(a) Exothermic process				
	Explanation: The respiration process during which glucose undergoes slow combustion by				
	combining with oxygen in the cells of our body to produce energy, is a kind of Exothermic				
	process (respiration is considered an exothermic process.)				
Ans. 5	(a) The litmus paper used is dry				
	Explanation: In case of dry HCl gas, there is no presence of water and so, the dye on litmus				
	paper cannot react with the gas. So, any dry gas will not give any change in the colour of				
	litmus paper.				
Ans. 6	(d) Changing of the atoms of on element into those of another element to form				
	new products				
	Explanation: A chemical reaction, one substance is converted into another by				
	rearrangement of atoms and not by changing elements of one type into another.				

Ans. 7	(b) (i) and (iii)
	Explanation: On adding the acid into the water, acid gets ionized and breaks down into
	ions, with that there is also seen dilution of acid as water soluble acids gets hydrogen
	bonding and gets diluted.
Ans. 8	(d) (ii) and (iv)
	Explanation: Litmus and methyl orange turn red in acidic solution.
Ans. 9	(d) (iii) and (iv)
	Explanation: Rancidity is development of unpleasant smell from food due to oxidation or
	hydration of fat by metallic atoms and microbes. It is prevented by adding antioxidants to
	the food, storing the food in air-tight compartment, storing the food in refrigerator and
	keeping the food away from the sun.
Ans. 10	(a) $Mg > Al > Zn > Fe$
	Explanation: The decreasing order of the reactivity of the common metals is given below:
	Li, K, Na, Ba, Ca, Mg , Al, Mn, Zn, Fe, Ni, Sn, Pb, [H], Cu,Hg, Ag, Au,Pt
Ans. 11	(B)
	Explanation: In parasitic nutrition organism derives its food from the body of another living
	organism called host without killing it. Parasitic mode of nutrition is observed in several
	fungi, bacteria, few plants like Cuscuta and some animals like Plasmodium and round
	worms.
Ans. 12	(C)
	Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal
	Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal which involves contraction and relaxation of the muscles. It begins in the esophagus and
	Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal which involves contraction and relaxation of the muscles. It begins in the esophagus and helps to move the food along the alimentary canal for the process of digestion.
Ans. 13	Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal which involves contraction and relaxation of the muscles. It begins in the esophagus and helps to move the food along the alimentary canal for the process of digestion.(B)
Ans. 13	 Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal which involves contraction and relaxation of the muscles. It begins in the esophagus and helps to move the food along the alimentary canal for the process of digestion. (B) Explanation: The breakdown of pyruvate to give carbon dioxide, water and energy takes
Ans. 13	 Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal which involves contraction and relaxation of the muscles. It begins in the esophagus and helps to move the food along the alimentary canal for the process of digestion. (B) Explanation: The breakdown of pyruvate to give carbon dioxide, water and energy takes place in mitochondria.
Ans. 13 Ans. 14	 Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal which involves contraction and relaxation of the muscles. It begins in the esophagus and helps to move the food along the alimentary canal for the process of digestion. (B) Explanation: The breakdown of pyruvate to give carbon dioxide, water and energy takes place in mitochondria. (C)
Ans. 13 Ans. 14	 Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal which involves contraction and relaxation of the muscles. It begins in the esophagus and helps to move the food along the alimentary canal for the process of digestion. (B) Explanation: The breakdown of pyruvate to give carbon dioxide, water and energy takes place in mitochondria. (C) Explanation: Haemoglobin is the respiratory pigment in human beings.
Ans. 13 Ans. 14 Ans. 15	 Explanation: Peristalsis is a type of wave-like movement occurring in the alimentary canal which involves contraction and relaxation of the muscles. It begins in the esophagus and helps to move the food along the alimentary canal for the process of digestion. (B) Explanation: The breakdown of pyruvate to give carbon dioxide, water and energy takes place in mitochondria. (C) Explanation: Haemoglobin is the respiratory pigment in human beings. (B)

	Explanation: Gas exchange takes place in the millions of alveoli in the lungs and the
	capillaries that envelop them.
Ans. 16	(B)
	Explanation: Salivary amylase helps in breaking of starch into simple carbohydrates
Ans. 17	(a) 2.0 D and +50 cm respectively
	Explanation: The power of combination of lenses is given by: $P = P_1 + P_2$
	Therefore, $P = +2.5 - 0.5 = +2.0 D$
	Focal length is the reciprocal of power.
	Therefore, $f = 1/2 m = +0.5 m = +50 cm$
Ans. 18	(b) 20 cm
	Explanation: The rays coming from an object placed at large distance can be considered as a
	parallel rays. After reflection from it, they appear to meet at its focus, which is $\frac{40}{2} = 20$ cm.
Ans. 19	(d) the image becomes less brighter than before.
	Explanation: A complete image of an object will be formed but of less intensity because
	the light falling on the covered portion will not reach at the image position.
Ans. 20	(c) 4 mm
	Explanation:
	Given $f = +10$ cm (Convex lens)
	$h_1 = 2 mm = 0.2 cm$
	u = -5 cm
	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$
	$\frac{1}{f} = \frac{1}{v} - (-\frac{1}{5}) \Rightarrow \frac{1}{f} = \frac{1}{v} + \frac{1}{5}$
	$\frac{1}{v} = \frac{1}{10} - \frac{1}{5}$
	$=\frac{1-2}{10}=\frac{-1}{10}$
	v = -10 cm
	$\Rightarrow m = \frac{v}{u} = \frac{h_2}{h_1}$

	$m = \frac{-10}{-5} = \frac{h_2}{0.2}$
	$h_2 = 0.4 \text{ cm}$
	$h_2 = 4 \text{ mm}$
Ans. 21	$(d) - \frac{80}{2}$ cm
	Evaluation
	m = -3
	v = 80 cm
	$m = \frac{v}{u}$
	$-3 = \frac{80}{30}$
	u 80
	$u = \frac{1}{-3}$
	$=\frac{-80}{3}$ cm
	5
Ans. 22	(c) (II), (III) and (IV)
	explanation:
	A concave mirror forms a real and inverted image of an object for all positions of the object
	except when object lies between the pole and focus of the mirror, in which virtual and erect
	image is formed behind the mirror.
	The ray of light shown is incident normally on the mirror and hence will be reflected back
	along the same path.
Ans. 23	(d) Medium 1 and 3 are essentially the same medium, but medium 2 is denser than 1 and
	3.
	Explanation: It is given that $\angle 1 = \angle 3 = \angle 4$ but $\angle 2 < \angle 1$.
	This means that medium 1 and 3 are the same medium as angle of emergence (\angle 3) is equal
	to the angle of incidence ($\angle 1$) only when both media are same.
	Medium 2 is denser than both medium 1 and 3 as angle of refraction ($\angle 2$) is less than angle
	of incidence ($\angle 1$)
Ans. 24	(b) 1.21
	Explanation:

	Refractive index of flint glass w.r.t alcohol = $\frac{\text{RI of flint glass}}{\text{mass}} = \frac{1.65}{1.21} = 1.21$							
	RI of alcohol 1.36							
	The refractive index of two media with respect, to each other can be found out in the							
	following manner.							
	Consider three transparent media 1. 2 and 3 having refractive indices n_1,n_2 and n_3							
	respectively. Then, the refractive index of medium 3 with respect to medium 2 is given as,							
	$n_{22} = \frac{n_3}{n_1} = \frac{n_3}{n_1} = n_{21} \times n_{12}$							
	$n_2 = \frac{n_2}{n_1} = n_{21}$							
	Section - B							
Ans. 25	(h)Nitrogen gas							
1	Explanation: gases such as helium or nitrogen prevent the contact of air (or atmospheric							
	oxygen) with oil. In this way, we can prevent oil from becoming rancid for a long period of							
	time.							
Ans. 26	(d) AgNO ₃ solution and copper metal							
	Explanation: Copper (Cu) being more reactive than silver (Ag), displaces silver from silver							
	nitrate (AgNO ₃) to form copper nitrate							
	$2AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + 2Ag$							
Ans. 27	(a) CuSO ₄ + Fe							
	Explanation: As per the reactivity series of metals, iron is more reactive than copper metal							
	so it can displace copper from copper sulphate solution and form iron (II) sulphate and							
	copper:							
Ans. 28	(b) Na							
	Explanation: Na is a metal which is soft enough to be cut with a knife. It is so reactive that							
	it reacts vigorously with air or moisture and catches fire when kept in open. So to prevent							
	it from coming in contact with oxygen and moisture, it is kept in kerosene.							
Ans. 29	(d) Calcium chloride, carbon dioxide and water							
	Explanation: $CaCO_3(s)+2HCl(aq)\rightarrow CaCl_2(aq)+CO_2(g)+H_2O(l)$.							
Ans. 30	(c) Baking soda							

	Explanation: Methanoic acid is injected into the skin of a person during an ant's sting. The
	effect of methanoic acid can be neutralised by rubbing a mild base like baking soda solution
	on the stung area of the skin.
Ans. 31	(b) Both A and R are true but R is not the correct explanation of A.
Ans. 32	(a) Both A and R are true and R is the correct explanation of A
Ans. 33	(B)
	Explanation:
	Both A and R are true, but R is not the correct explanation of A
	Kidney failure can be managed by artificial kidney. It is a device used to remove nitrogenous
	waste products from the blood through dialysis. Artificial kidney is different from natural
	kidney as the process of reabsorption does not occur in artificial kidney.
Ans. 34	(d) White light is made up of seven constituent colours.
	Explanation:
	The splitting of white light into its constituent colours as it passes through a refracting
	medium (such as prism) is known as dispersion. The phenomenon of dispersion shows that
	white light is made up of seven constituent colours.
Ans. 35	(b) $CaSO_4 \cdot \frac{1}{2}H_2O$
Ans. 36	(C) Platelets are required for clotting of the blood. The platelets collect at a wound site in
	conjunction with other clotting factors, such as fibrinogen, to form a fibrin clot that
	prevents blood loss and allows the wound to heal.
Ans. 37	(B)
	Explanation: The stores form of energy in plants is starch
Ans. 38	(C)
	Explanation: Bladder holds urine until you're ready to empty it (pee). It's hollow, made of
	muscle, and shaped like a balloon. Your bladder expands as it fills up.

Ans. 39	focal length			
	object			
	Screen			
	Explanation: In the image formation by a converging or convex lens, a ray parallel to the principal			
	axis passes through the focus after refraction and a ray passing through the optical center			
	does not suffer any deviation, as it incident normally.			
Ans. 40	(a) 30 cm in front of the mirror			
	Explanation: If rays converge at a point 15 cm from the mirror, then.			
	So, $f = -15$ cm			
	C = -30 cm			
	An object kept at C makes an image of the same size as object.			
Ans. 41	(B)			
	Small Intestine			
Ans. 42	(A)			
	Explanation:			
	Valves helps in preventing backflow of blood.			
Ans. 43	(C)			
	$2.25 \times 10^8 \text{ m/sec}$			
Ans. 44	Explanation: in case of convex lens, when the object is at placed at infinity, the image is			
	formed at the focus of the lens. The nature of the image is real and inverted.			
Ans. 45	(b) The blue colour of the sky is due to scattering of light.			
	Explanation:			
	When the Sun's light reaches the Earth's atmosphere it is scattered, or deflected, by the tiny			
	molecules of gas (mostly nitrogen and oxygen) in the air. Because these molecules are much			

	smaller	than	the	wavelength	of	visible	light,	the	amount
	of scattering	g depend	ls on the	wavelength.					
	Shorter way	velength	s (violet	and blue) are s	cattered	d the most s	strongly, s	o more o	f the blue
	light is scat	tered to	wards ou	ır eyes than the	other o	colours. You	ı might wo	onder wł	iy the sky
	doesn't actu	ually lool	<pre>c purple</pre>	since the violet	light is	scattered ev	ven more s	strongly	than blue.
	This is beca	ause ther	•e isn't a	s much violet ir	sunlig	ht to start v	with, and o	our eyes	are much
	more sensit	tive to bl	ue.						
Ans. 46	(a) 60°								
	Explanation	:							
	At face PQ, a	ngle of in	cidence i	s 0° as ray AB fal	ls norm	ally on this f	ace. This no	ormally in	icident ray
	AB goes und	leviated a	nd strike	s the face PR at j	point C.	The angle of	f incidence,	, at point	C with the
	normal MN i	s the angl	e NCB.						
	From the geo	ometry of	figure, it	is clear that $\angle NC$	B is equ	al to 60°.			
Ang 47	A Q G G G G G G G G G G	B mgle of inc	P 60° 30° 30° N cidence a	M C 60° R t face PQ is 0° and	l angle o	f incidence a	t face PR is	60°	
Ans. 47	(b) Twice	m		с	,	1. 1. (· · ·		, ,
	Explanation	Inere	are two	refractions once	e when	light goes f	rom air to	o glass ar	id second
	time when l	light goes	s trom g	ass to air.					
Ans. 48	(b) Blue to	white							
	Explanation	: when b	lue copp	er sulphate crys	tals are	heated they	y lose wate	er of cryst	allization
	and blue co	lour of c	uso4 cha	nges to white.					

Section – C					
Ans. 49	(a) Copper				
	Explanation: Copper is placed below hydrogen in activity series therefore, it is less				
	reactive than hydrogen.				
Ans. 50	(a) Iron				
	Explanation: Iron is placed above hydrogen in activity series therefore, it is more				
	reactive than hydrogen.				
Ans. 51	(c) Sodium				
Ans. 52	(a) $Na > Mg > Al > Cu$				
Ans. 53	(C)				
	Explanation: The storage organ for urine is urinary bladder. However urine is stored				
	there for a certain time period i.e. temporary.				
Ans. 54	(B)				
	Explanation: The main function of ureter is that it carries urine from kidney to bladder				
	which is the storage organ.				
Ans.55	(D)				
	Explanation: Structure 5(ureter) has high concentration of urea since it carries urine.				
	Structure 3 (renal vein) has least amount of urea.				
Ans.56	(D)				
	Explanation: Kidney \rightarrow ureter \rightarrow urinary bladder \rightarrow urethra				
Ans.57	(b) a parallel-sided glass block				
	Explanation: As both the rays 1 and 2 are parallel to each other but laterally displaced.				
	So, the material X is a glass slab. The emergent ray is always parallel to the incident ray				
	in case of a glass slab, but is laterally displaced.				
Ans.58	(c) 30°				
	Explanation:				
	Refractive index of medium = $\frac{\sin i}{\sin r}$				
	$1.5 = \frac{\sin 48.6^{\circ}}{\sin r}$				

	$1.5 = \frac{0.75}{\sin r}$
	$\sin r = \frac{0.75}{1.5}$
	$\sin r = 0.5$
	$r = \sin^{-1}(0.5)$
	$r = 30^{\circ}$
Ans.59	(d) (III) and (V) are correct.
	Explanation: As light bends towards the normal when it travels from air to glass, as air is
	rarer than glass, which means that the refractive index of air is less than that of glass. The
	refractive index of a medium 2 with respect to medium 1 or n_{21} is the ratio of sine of
	angle of incidence i to the sine of angle of refraction r which can be written as
	$\frac{\sin i}{\sin r} = n_{21}$
Ans.60	(a) lateral shift of the rays would have been less.
	Explanation: The lateral shift depends on the refractive index of the medium and
	thickness of the slab. The greater the refractive index of the second medium, greater
	would light bend and hence greater would be the lateral shift.