	Sample Question Paper - 2 (TERM - I)	
Solutions		
	Section - A	
Ans. 1	(a)	
	Explanation:	
	The lines $5x + 6y = 3$ and $15x + 18y = k$ will coincide.	
	If $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{C_1}{C_2}$	
	or. $\frac{5}{15} = \frac{6}{18} = \frac{(-3)}{-k}$	
	$\Rightarrow \frac{6}{18} = \frac{3}{k}$	
	\Rightarrow k = 9	
Ans. 2	(c)	
	Explanation:	
	On tossing three fair coins,	
	Total possible outcomes	
	= {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT.} ie. 8	
	Favourable outcomes (at most one head)	
	$= \{TTH, THT, HTT, TTT\}$ ie. 4.	
	\therefore P(At most one head) = $\frac{4}{8} = \frac{1}{2}$	
Ans. 3	(d)	
	Explanation:	
	$\therefore \Delta ABC \sim \Delta PQR$	
	$B \xrightarrow{A} C Q \xrightarrow{P} R$	

	AB BC AC AM
	$\therefore \ \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = \frac{AM}{PN}$
	$\Rightarrow \frac{AB}{PO} = \frac{AM}{PN} \Rightarrow \frac{AM}{PN} = \frac{2}{3} \left[\because \frac{AB^2}{PO^2} = \frac{4}{9} \Rightarrow \frac{AB}{PO} = \frac{2}{3} \right]$
Ans. 4	(b)
	Explanation:
	$4\sin^2\beta - 2\cos^2\beta = 4$
	Then, $4\sin^2\beta - 2(1-\sin^2\beta) = 4$
	$6\sin^2\beta = 6 \text{ or } \sin^2\beta = 1$
	$\beta = 90^{\circ}$
Ans. 5	(c)
	Explanation:
	·· DE BC
	$\therefore \ \angle ADE = \angle ABC[determinate pair of angles] \dots . (i)$
	Now, in \triangle ADE and \triangle ABC,
	$\angle ADE = \angle ABC$ [Proved in (i)]
	$\angle A = \angle A$ [Common angle]
	$\therefore \Delta ADE \sim \Delta ABC [By AA similarity axiom]$
	$\therefore \frac{AD}{AB} = \frac{DE}{BC} [:: Corresponding sides of similar triangles are proportional]$
	$\Rightarrow \frac{AD}{AD + BD} = \frac{DE}{BC}$
	$\Rightarrow \frac{AD + BD}{4} = \frac{BC}{BC}$
	$\Rightarrow \frac{4}{4+7} = \frac{5L}{11}$
	\Rightarrow DE = 4
Ans. 6	(a)
	Explanation:
	Dividing both numerator and denominator by $\cos\beta$,
	$\Rightarrow \frac{4\sin\beta - 3\cos\beta}{4\sin\beta + 3\cos\beta} = \frac{4\tan\beta - 3}{4\tan\beta + 3}$
	$=\frac{3-3}{3+3}=0$
Ans. 7	(a)

Ans. 10	(b)
	Explanation:
	The probability that the ball is dropped in the basket by John $=\frac{4}{5}=0.80$
	The probability that the ball is dropped in the basket by $Vasim = 0.83$
	The probability that the ball is dropped in the basket by Akash = $58\% = \frac{58}{100} = 0.58$
	0.83 > 0.80 > 0.58
	\therefore Vasim has the greatest probability of success.
Ans. 11	(b) 45°
	Explanation:
	$\sin 2x = \sin 45^{\circ} \cos 45^{\circ} + \sin 30^{\circ}$
	$\Rightarrow \sin 2x = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{2}$
	$\Rightarrow \sin 2x = \frac{1}{2} + \frac{1}{2} = 1 = \sin 90^{\circ}$
	$\Rightarrow 2x = 90^{\circ} \Rightarrow x = 45^{\circ}$
Ans. 12	(b) 24
	Explanation:
	Here the jar contains red, blue and orange balls.
	Let the number of red balls be x.
	Let the number of blue balls be y.
	Number of orange balls $= 10$
	Total number of balls = $x + y + 10$
	Now, let P be the probability of drawing a ball from the jar
	P(a red ball) = x/(x + y + 10)
	1/4 = x/(x + y + 10)
	4x = x + y + 10
	$3x - y = 10 \dots \dots (i)$
	Next
	P(a blue ball) = y/(x + y + 10)
	1/3 = y/(x + y + 10)
	3y = x + y + 10

	$2y - x = 10 \dots \dots (ii)$
	Multiplying eq. (i) by 2 and adding to eq. (ii), we get
	6x - 2y = 20
	-x + 2y = 10
	5x = 30
	Subs. $x = 6$ in eq. (i), we get $y = 8$
	Total number of balls = $x + y + 10 = 6 + 8 + 10 = 24$
	Hence, total number of balls in the jar is 24 .
Ans. 13	$(a) \frac{1000}{9\pi} cm$
	Explanation:
	Let radius of wheel = r m
	Circumference of wheel = $(2\pi r)m$
	No. of revolutions $= 450$
	Distance in 450 revolutions = $450 \times 2\pi r = 900\pi r$ m
	Distance travelled = 1000 m
	$900\pi r = 1000$
	$r = \frac{1000}{900\pi}$
	$=\frac{10}{9\pi}$ m
	$=\frac{1000}{9\pi}\mathrm{cm}$
	radius (r) = $\frac{1000}{9\pi}$ cm
Ans. 14	(c) 14 cm
	Explanation:
	Radius of outer circle = 21 cm
	Radius of inner circle = r

	Area between concentric circles = area of outer circle – area of inner circle
	$\Rightarrow 770 = \frac{22}{7}(21^2 - r^2)$
	$\Rightarrow 21^2 - r^2 = 35 \times 7 = 245$
	$\Rightarrow 441 - 245 = r^2$
	\Rightarrow r = $\sqrt{196}$ = 14 cm
	Radius of inner circle = 14 cm.
Ans. 15	(b)
	Explanation:
	0 17.5 m ↓
	The point $^{\uparrow 2m}$ Diameter of the point = 17.5 m
	Radius of the pond = 8.75 m
	Radius of the pond with the path = $8.75 + 2 = 10.75$ m
	Area of the path = Area of the pond along with the path - area of the pond
	Area of the path = $\pi[(10.75)^2 - (8.75)^2]$
	$=\pi[(2)(19.5)]$
	$= 122.46 \text{ m}^2$
	Cost of constructing the path = $25 \times 122.46 = \text{Rs} 3061.5$
Ans. 16	$(c) (\sin \alpha + \cos \alpha) \sqrt{(a^2 + b^2)}$
	Explanation:
	The distance d between two points $(x1, y1)$ and $(x2, y2)$ is given by the formula.
	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
	The two given points are (asin α , $-b\cos \alpha$) and ($-a\cos \alpha$, $b\sin \alpha$)
	The distance between these two points is
	$d = \sqrt{(a\sin\alpha + a\cos\alpha)^2 + (-b\cos\alpha - b\sin\alpha)^2}$
	$=\sqrt{a^2(\sin\alpha+\cos\alpha)^2+b^2(-1)^2(\cos\alpha+\sin\alpha)}$

	$= \sqrt{a^2(\sin\alpha + \cos\alpha)^2 + b^2(\sin\alpha + \cos\alpha)}$
	$=\sqrt{(a^2+b^2)(\sin\alpha+\cos\alpha)}$
	$d = (\sin \alpha + \cos \alpha)\sqrt{a^2 + b^2}$
	Hence the distance is $(\sin \alpha + \cos \alpha)\sqrt{(a^2 + b^2)}$
Ans. 17	(a) 5 or -3
	Explanation:
	The distance d between two points (x_1, y_1) and (x_2, y_2) is given by the formula
	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
	The three given points are $P(6, -1)$, $Q(1,3)$ and $R(x, 8)$.
	Now let us find the distance between ' P' and ' Q '.
	$PQ = \sqrt{(6-1)^2 + (-1-3)^2}$
	$=\sqrt{(5)^2+(-4)^2}$
	$=\sqrt{25+16}$
	$PQ = \sqrt{41}$
	Now, let us find the distance between ' Q ' and ' R '.
	$QR = \sqrt{(1-x)^2 + (3-8)^2}$
	$QR = \sqrt{(1-x)^2 + (-5)^2}$
	It is given that both these distances are equal. So, let us equate both the above
	equations,
	PQ = QR
	$\sqrt{41} = \sqrt{(1-x)^2 + (-5)^2}$
	Squaring on both sides of the equation we get,
	$41 = (1 - x^2) + (-5)^2$
	$41 = 1 + x^2 - 2x + 25$
	$15 = x^2 - 2x$
	Now we have a quadratic equation. Solving for the roots of the equation we have,
	$x^2 - 2x - 15 = 0$
	$x^2 - 5x + 3x - 15 = 0$

	x(x-5) + 3(x-5) = 0
	(x-5)(x+3) = 0
	Thus the roots of the above equation are 5 and -3 .
	Hence the values of ' x ' are 5 or -3 ,
Ans. 18	(b) (0, -2)
	Explanation:
	The distance d between two points (x_1, y_1) and (x_2, y_2) is given by the formula
	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
	Here we are to find out a point on the y-axis which is equidistant from both the
	points $A(5, -2)$ and $B(-3, 2)$
	Let this point be denoted as C(x, y)
	Since the point lies on the y-axis the value of its ordinate will be 0. Or in other
	words, we have $x = 0$.
	Now let us find out the distances from ' A ' and ' B' to ' C'
	$AC = \sqrt{(5-x)^2 + (-2-y)^2}$
	$=\sqrt{(5-0)^2 + (-2-y)^2}$
	$AC = \sqrt{(5)^2 + (-2 - y)^2}$
	BC = $\sqrt{(-3-x)^2 + (2-y)^2}$
	$=\sqrt{(-3-0)^2 + (2-y)^2}$
	$BC = \sqrt{(-3)^2 + (2 - y)^2}$
	We know that both these distances are the same. So equating both these we get,
	AC = BC
	$\sqrt{(5)^2 + (-2 - y)^2} = \sqrt{(-3)^2 + (2 - y)^2}$
	Squaring on both sides we have,
	$(5)^{2} + (-2 - y)^{2} = (-3)^{2} + (2 - y)^{2}$
	$25 + 4 + y^2 + 4y = 9 + 4 + y^2 - 4y$
	8y = -16
	y = -2

	Hence the point on the y-axis which lies at equal distances from the mentioned
	points is $(0, -2)$.
A. 10	
Ans. 19	(c) 8
	Explanation:
	The maximum number of columns in which they can march = HCF (32,616)
	$32 = 2 \times 2 \times 2 \times 2 \times 2$
	$616 = 2 \times 2 \times 2 \times 7 \times 11$
	HCF of 32 and $616 = 2 \times 2 \times 2 = 8$
	The maximum number of columns in which they can march is 8.
Ans. 20	(a) 18
	Explanation:
	Number of cartons of coke cans $= 144$
	Number of cartons of pepsi cans $= 90$
	\therefore The greatest number of cartons in one stock = HCF of 144 and 90 = 18
	Hence the greatest number cartons in one stock $= 18$
Ans. 21	(c) 6 sq. units
	Explanation:
	\therefore Required area = Area of \triangle ACD
	$=\frac{1}{2} \times AD \times Distance of point C from y-axis$
	$=\frac{1}{2} \times \left(4 - (-2)\right) \times 2$
	$=\frac{1}{2}\times6\times2=6$
Ans. 22	(d) 35
	Explanation:
	Number of goats = 105
	Number of donkeys $= 140$
	Number of $cows = 175$
	To find the largest possible number of animals, we will find the H.C.F of 105,140
	and 175.

	$105 = 3 \times 5 \times 7$
	$140 = 2 \times 2 \times 5 \times 7$
	$175 = 5 \times 5 \times 7$
	HCF of 105,140 and $175 = 5 \times 7 = 35$
	Hence The number of animals went in each trip is 35
Ans. 23	(c) 30°
	Explanation:
	We know, $A = \frac{\theta}{360} \times Area$ of the circle(1)
	Let the area of the circle be Ar.
	Thus area of the sector $=\frac{1}{12}$ Ar(2)
	From (1) and (2) we have
	$\frac{1}{12}Ar = \frac{\theta}{360} \times Ar$
	$\Rightarrow \frac{360}{12} = \theta$
	$\Rightarrow \theta = 30^{\circ}$
Ans. 24	(b) Rs 5887.50
	Explanation:
	Since four semi-circular flower beds rounds the rectangular park. Then, diameters
	of semi-circular plots are $2r_1 = l$ and $2r_2 = w$
	1
	$r_1 = \frac{1}{2}$
	$=\frac{100}{2}$
	$-\frac{1}{2}$
	= 50 m
	Area of semi-circular plot at larger side of rectangle = $\frac{1}{2}\pi r^2$
	$=\frac{1}{2}\times3.14\times50\times50$
	$= 3925 \text{ m}^2$
	And the radius of semicircle at smaller side of rectangle
	$r_2 = \frac{W}{2}$

	$=\frac{50}{2}$
	= 25m
	Area of semicircluar plot at smaller side of rectangle = $\frac{1}{2}\pi r^2$
	$=\frac{1}{2}\times3.14\times25\times25$
	$= 981.25 \text{ m}^2$
	Now, the total area of semi-circular plot is sum of area of four semi-circular plots.
	Total Area of plot = $2 \times 3925 + 2 \times 981.25$
	$= 7850 + 192.5 \text{ m}^2$
	$= 9812.5 \text{ m}^2$
	Since, The cost of levelling semi-circular flower bed per square meter = $Rs 0.60$
	So, The cost of levelling 9812.5 square meter flower bed = Rs 0.60×9812.5
	= Rs 5887.50
Ans. 25	$(c)\frac{-2}{a}$
	Explanation:
	Explanation: $f(x) = ax^2 + bx + c$
	-
	$f(x) = ax^2 + bx + c$
	$f(x) = ax^{2} + bx + c$ $\alpha + \beta = \left(-\frac{b}{a}\right)$
	$f(x) = ax^{2} + bx + c$ $\alpha + \beta = \left(-\frac{b}{a}\right)$ $\alpha\beta = \frac{c}{a}$
	$f(x) = ax^{2} + bx + c$ $\alpha + \beta = \left(-\frac{b}{a}\right)$ $\alpha\beta = \frac{c}{a}$ since $\alpha + \beta$ are the roots (or) zeroes of the given polynomials then ,
	$f(x) = ax^{2} + bx + c$ $\alpha + \beta = \left(-\frac{b}{a}\right)$ $\alpha\beta = \frac{c}{a}$ since $\alpha + \beta$ are the roots (or) zeroes of the given polynomials then, $\frac{\beta}{a\alpha + b} + \frac{\alpha}{a\beta + b}$
	$f(x) = ax^{2} + bx + c$ $\alpha + \beta = \left(-\frac{b}{a}\right)$ $\alpha\beta = \frac{c}{a}$ since $\alpha + \beta$ are the roots (or) zeroes of the given polynomials then, $\frac{\beta}{a\alpha + b} + \frac{\alpha}{a\beta + b}$
	$f(x) = ax^{2} + bx + c$ $\alpha + \beta = \left(-\frac{b}{a}\right)$ $\alpha\beta = \frac{c}{a}$ since $\alpha + \beta$ are the roots (or) zeroes of the given polynomials then, $\frac{\beta}{a\alpha + b} + \frac{\alpha}{a\beta + b}$ $= \frac{\beta(a\beta + b) + \alpha(a\alpha + b)}{(a\alpha + b)(a\beta + b)}$
	$f(x) = ax^{2} + bx + c$ $\alpha + \beta = \left(-\frac{b}{a}\right)$ $\alpha\beta = \frac{c}{a}$ since $\alpha + \beta$ are the roots (or) zeroes of the given polynomials then, $\frac{\beta}{a\alpha + b} + \frac{\alpha}{a\beta + b}$
	$f(x) = ax^{2} + bx + c$ $\alpha + \beta = \left(-\frac{b}{a}\right)$ $\alpha\beta = \frac{c}{a}$ since $\alpha + \beta$ are the roots (or) zeroes of the given polynomials then, $\frac{\beta}{a\alpha + b} + \frac{\alpha}{a\beta + b}$ $= \frac{\beta(a\beta + b) + \alpha(a\alpha + b)}{(a\alpha + b)(a\beta + b)}$

$=\frac{a(\alpha^2 + \beta^2) + b(\alpha + \beta)}{ac + ab(-\frac{b}{a}) + b^2}$
$=\frac{a[(\alpha+\beta)^2-2\alpha\beta]+b\times-\frac{b}{a}}{ac-b^2+b^2}$
$a\left[\left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right)\right] - \frac{b^2}{a}$
$= \frac{1}{ac}$ $\frac{b^2}{a} - (2c) - \frac{b^2}{a}$
$= \frac{a}{ac} \frac{(2c)}{ac}$
$=\frac{1}{ac}$
$=$ $\frac{1}{a}$

	Section – B	
Ans. 26	(a) $x = 4, y = 9$	
	Explanation:	
	$\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$, $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -1$	
	Let $\frac{1}{\sqrt{x}} = p$ and $\frac{1}{\sqrt{y}} = q$	
	The given equations reduce to:	
	$2p + 3q = 2 \dots \dots \dots (1)$	
	$4p - 9q = -1 \dots \dots (2)$	
	Multiplying equation (1) by (3), we obtain:	
	6p + 9q = 6(3)	
	Adding equation (2) and (3), we obtain:	
	10p = 5	
	$p = \frac{1}{2}$	
	Putting the value of p in equation (1), we obtain:	
	$2 \times \frac{1}{2} + 3q = 2$	
	$q = \frac{1}{3}$	
	$\therefore \mathbf{p} = \frac{1}{\sqrt{\mathbf{x}}} = \frac{1}{2}$	
	$\sqrt{\mathbf{x}} = 2$	
	x = 4	
	$q = \frac{1}{\sqrt{y}} = \frac{1}{3}$ $\sqrt{y} = 3$	
	$\sqrt{y} = 3$	
	y = 9	
	$\therefore x = 4, y = 9$	
Ans. 27	(b) 2	
	Explanation:	

It is given that: $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1 \dots (A)$ And, $\frac{x}{a}\sin\theta - \frac{y}{b}\cos\theta = 1 \dots (B)$ On squaring equation (A), we get $\frac{x^2}{a^2}\cos^2\theta + \frac{y^2}{b^2}\sin^2\theta + 2\frac{x}{a}\cdot\frac{y}{b}\sin\theta\cdot\cos\theta = 1 \quad \dots (C)$ On squaring equation (B), we get $\frac{x^2}{a^2}\sin^2\theta + \frac{y^2}{b^2}\cos^2\theta - 2\frac{x}{a}\cdot\frac{y}{b}\sin\theta\cdot\cos\theta = 1 \quad \dots (D)$ Adding (C) and (D), we get, $\Rightarrow \frac{x^2}{a^2}\cos^2\theta + \frac{y^2}{b^2}\sin^2\theta + 2\frac{x}{a}\cdot\frac{y}{b}\sin\theta\cdot\cos\theta + \frac{x^2}{a^2}\sin^2\theta + \frac{y^2}{b^2}\cos^2\theta - 2\frac{x}{a}$ $\cdot \frac{y}{h} \sin \theta \cdot \cos \theta = 1 + 1$ $\Rightarrow \frac{x^2}{a^2}(\sin^2\theta + \cos^2\theta) + \frac{y^2}{b^2}(\sin^2\theta + \cos^2\theta) = 2$ $\Rightarrow \frac{x^2}{2^2} \times 1 + \frac{y^2}{b^2} \times 1 = 2$ $\Rightarrow \frac{x^2}{2^2} + \frac{y^2}{b^2} = 2$ (c) 10 Ans. 28 **Explanation:** Given $3\cos\theta = 1$ We have to find the value of the expression $\frac{6\sin^2\theta + \tan^2\theta}{4\cos\theta}$ We have $3\cos\theta = 1$ $\Rightarrow \cos \theta = \frac{1}{3}$ $\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \left(\frac{1}{3}\right)^3} = \frac{\sqrt{8}}{3}$

	$\sqrt{8}$
	$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{\sqrt{8}}{3}}{\frac{1}{3}} = \sqrt{8}$
	Therefore,
	$\frac{6\sin^2\theta + \tan^2\theta}{4\cos\theta} = \frac{6\times\left(\frac{\sqrt{8}}{3}\right)^2 + (\sqrt{8})^2}{4\times\frac{1}{3}}$
	= 10
	Hence, the value of the expression is 10 .
	The distance d between two points (x_1, y_1) and (x_2, y_2) is given by the
	formula
	$d = \sqrt{(x_1 - y_1)^2 + (y_1 - y_2)^2}$
Ans. 29	(a) $\left(-\frac{2}{7},-\frac{20}{7}\right)$
	Explanation:
	The coordinates of point A and B are $(-2, -2)$ and $(2, -4)$ respectively.
	Since $AP = \frac{3}{7}AB$
	Therefore, AP: $PB = 3:4$
	Point P divides the line segment AB in the ratio 3: 4.
	Coordinates of P = $\left(\frac{3 \times 2 + 4 \times (-2)}{3 + 4}, \frac{3 \times (-4) + 4 \times (-2)}{3 + 4}\right)$
	$= \left(\frac{6-8}{7}, \frac{-12-8}{7}\right)$ $= \left(-\frac{2}{7}, -\frac{20}{7}\right)$
Ans. 30	(d) 7:5.
	Explanation:
	Let y-axis divides the line of (7,3) and $(-5, -12)$ in the ratio 1: n.
	\Rightarrow x – coordinate will be $\frac{-5+7n}{1+n}$.
	as y axis divides the line joining (7,3) and $(-5, -12)$ it's x – coordinate is
	zero.

	$\frac{-5+7n}{1+n} = 0$
	-5 + 7n = 0
	$n = \frac{5}{7}$
	Hence, Y - axis divides given points in the ratio $1:\frac{5}{7}$ i.e. 7: 5.
Ans. 31	(c) cost of each bat = Rs 500 and cost of each balls = Rs 50
	Explanation:
	Let cost of each bat = $Rs x$
	Cost of each ball = Rsy
	Given that coach of a cricket team buys 7 bats and 6 balls for Rs 3800 .
	7x + 6y = 3800 6y = 3800 - 7x
	Dividing by 6, we get
	$y = (3800 - 7x)/6 \dots (i)$
	Given that she buys 3 bats and 5 balls for Rs 1750 later.
	3x + 5y = 1750
	Putting the value of y
	3x + 5((3800 - 7x)/6) = 1750
	Multiplying by 6, we get
	18x + 19000 - 35x = 10500 -17x = 10500 - 19000 -17x = -8500 x = -8500/-17 x = 500
	Putting this value in equation (i) we get
	$y = (3800 - 7 \times 500)/6$ y = 300/6 y = 50
	Hence cost of each bat = $Rs 500$ and cost of each balls = $Rs 50$

Ans. 32	(a) $x = 3$ and $y = 2$
	Explanation:
	kx - 5y = 2
	6x + 2y = 7
	Condition for system of equations having no solution
	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
	$\Rightarrow \frac{k}{6} = \frac{-5}{2} \neq \frac{2}{7}$
	$\Rightarrow 2k = -30$
	$\Rightarrow k = -15$
Ans. 33	(b) $\frac{1}{2}$
	Explanation:
	It is given that,
	$\sin\theta - \cos\theta = 0$
	$\Rightarrow \sin \theta = \cos \theta$
	$\Rightarrow \frac{\sin \theta}{\cos \theta} = 1$
	$\Rightarrow \tan \theta = 1$
	$\Rightarrow \tan \theta = \tan 45^{\circ}$
	$\Rightarrow \theta = 45^{\circ}$
	$\therefore \sin^4 \theta + \cos^4 \theta$
	$=\sin^4 45^\circ + \cos^4 45^\circ$
	$=\left(\frac{1}{\sqrt{2}}\right)^4 + \left(\frac{1}{\sqrt{2}}\right)^4$
	$=rac{1}{4}+rac{1}{4}$
	$=\frac{1}{2}$

Ans. 34	(c) 1
	Explanation:
	$\cos A + \cos^2 A = 1$
	$\Rightarrow 1 - \cos^2 A = \cos A$
	So,
	$\sin^2 A + \sin^4 A$
	$= \sin^2 A + \sin^2 A \sin^2 A$
	$= \sin^2 A + (1 - \cos^2 A)(1 - \cos^2 A)$
	$=\sin^2 A + \cos A \cos A$
	$=\sin^2 A + \cos^2 A = 1$
Ans. 35	(c) 60°
	Explanation:
	θ = angle subtended at centre (degrees)
	Length of Arc = $\frac{\theta}{360^{\circ}} \times 2\pi r$ m
	But arc length $=\frac{5\pi}{3}$ cm
	$\therefore \frac{\theta}{360^{\circ}} \times 2\pi \times 5 = \frac{5\pi}{3}$
	$\theta = \frac{360^{\circ} \times \pi}{3 \times 2\pi} = 60^{\circ}$
	\therefore Angle subtended at centre = 60°
Ans. 36	(b) 138
	Explanation:
	To find the largest number which exactly divides 280 and 1245 leaving
	remainders 4 and 3 respectively, we subtract 4 and 3 from 280 and 1245 .
	280 - 4 = 276
	1245 - 3 = 1242
	$276 = 2 \times 2 \times 3 \times 23$
	$1242 = 2 \times 3 \times 3 \times 3 \times 23$
	$HCF = 2 \times 3 \times 23 = 138$

	Therefore, the largest number which exactly divides 280 and 1245 leaving
l	remainders 4 and 3 respectively is 138.
Ans. 37	(b) 4290
	Explanation:
	GIVEN: A rectangular yard is 18 m 72 cm long and 13 m 20 cm broad .It is
	to be paved with square tiles of the same size.
	TO FIND: Least possible number of such tiles.
	Length of the yard = $18 \text{ m } 72 \text{ cm} = 1800 \text{ cm} + 72 \text{ cm} = 1872 \text{ cm}$ ($: 1 \text{ m} =$
	100 cm)
l	Breadth of the yard = $13 \text{ m } 20 \text{ cm} = 1300 \text{ cm} + 20 \text{ cm} = 1320 \text{ cm}$
	The size of the square tile of same size needed to the pave the rectangular
l	yard is equal the HCF of the length and breadth of the rectangular yard.
l	Prime factorisation of $1872 = 2^4 \times 3^2 \times 13$
	Prime factorisation of $1320 = 2^3 \times 3 \times 5 \times 11$
	HCF of 1872 and $1320 = 2^3 \times 3 = 24$
	\therefore Length of side of the square tile = 24 cm
	Number of tiles required =
	$\frac{\text{Area of the courtyard}}{\text{Area of each tile}} = \frac{\text{Lenght} \times \text{Breadth}}{(\text{Side})^2} = \frac{1872 \text{ cm} \times 1320 \text{ cm}}{(24 \text{ cm})^2}$
	= 4290
	Thus, the least possible number of tiles required is 4290.
Ans. 38	(b) shorter side = 90 cm , larger side = 120
	Explanation:
	Let the shorter side of the rectangle be x m.
	Then, larger side of the rectangle = $(x + 30)$ m
	Diagonal of rectangle = $\sqrt{x^2 + (x + 30)^2}$
	It is given that the diagonal of the rectangle = $(x + 60)m$
	$\frac{1}{1000} = \frac{1}{1000} = 1$

	$ \therefore \sqrt{x^2 + (x+30)^2} = x + 60 $ $ \Rightarrow x^2 + (x+30)^2 = (x+60)^2 $ $ \Rightarrow x^2 + x^2 + 900 + 60x = x^2 + 3600 + 120x $ $ \Rightarrow x^2 - 60x - 2700 = 0 $ $ \Rightarrow x^2 - 90x + 30x - 2700 = 0 $ $ \Rightarrow x(x - 90) + 30(x - 90) $ $ \Rightarrow (x - 90)(x + 30) = 0 $ $ \Rightarrow x = 90, -30 $ However, side cannot be negative. Therefore, the length of the shorter side will be 90 m. Hence, length of the larger side will be $(90 + 30)m = 120 m. $
Ans. 39	(d) 2.74 cm
	Explanation:
	Radius (r_1) of sphere = 4.2 cm
	Radius (r_2) of cylinder = 6 cm
	Let the height of the cylinder be h.
	The object formed by recasting the sphere will be the same in volume.
	Volume of sphere = Volume of cylinder
	$\frac{4}{3}\pi r_1^3 = \pi r_2^2 h$ $\frac{4}{3}\pi (4.2)^3 = \pi (6)^2 h$ $\frac{4}{3} \times \frac{4.2 \times 4.2 \times 4.2}{36} = h$ $h = (1.4)^3 = 2.74 \text{ cm}$ Hence, the height of the cylinder so formed will be 2.74 cm.
Ans. 40	(b) $\frac{3}{7}$
	Explanation:
	Let the numerator and denominator of the fraction be x and y respectively.
	Then the fraction is $\frac{x}{y}$
	The numerator of the fraction is 4 less the denominator. Thus, we have $x = y - 4$

	$\Rightarrow x - y = -4$
	If the numerator is decreased by 2 and denominator is increased by 1, then
	the denominator is 8 times the numerator. Thus, we have
	y + 1 = 8(x - 2)
	\Rightarrow y + 1 = 8x - 16
	$\Rightarrow 8x - y = 1 + 16$
	$\Rightarrow 8x - y = 17$
	So, we have two equations
	x - y = -4
	8x - y = 17
	Here x and y are unknowns. We have to solve the above equations for x and
	у.
	Subtracting the second equation from the first equation, we get
	(x - y) - (8x - y) = -4 - 17
	$\Rightarrow x - y - 8x + y = -21$
	$\Rightarrow -7x = -21$
	$\Rightarrow 7x = 21$
	$\Rightarrow x = \frac{21}{7}$
	$\Rightarrow x = 3$
	Substituting the value of x in the first equation, we have
	3 - y = -4
	\Rightarrow y = 3 + 4
	$\Rightarrow y = 3 + 4$ $\Rightarrow y = 7$
	Hence, the fraction is $\frac{3}{7}$
Ans. 41	Speed of boat in upstream = $(x - y)$ km/hr and speed of boat in
	downstream = $(x + y)km/hr$
	(a): 1 st situation can be represented algebraically as $\frac{24}{x-y} + \frac{36}{x+y} = 6$
Ans. 42	Speed of boat in upstream = $(x - y)$ km/hr and speed of boat in
	downstream = $(x + y)km/hr$

	(b):
	2 nd situation can be represented algebraically as $\frac{36}{x-y} + \frac{24}{x+y} = \frac{13}{2}$
Ans. 43	(c):
	Putting $\frac{1}{x-y} = u$ and $\frac{1}{x+y} = v$
	we get,
	24u + 36v = 6 and $36u + 24v = 13/2$
	Solving the above equations, we get $u = \frac{1}{8}$, $v = \frac{1}{12}$
Ans. 44	(d):
	$:: u = \frac{1}{8} = \frac{1}{x-y} \Rightarrow x - y = 8 \dots (i)$
	and $v = \frac{1}{12} = \frac{1}{x+y} \Rightarrow x + y = 12$ (ii)
	Adding equations (i) from (ii), we get $2x = 20 \Rightarrow x = 10$
	\therefore Speed of boat in still water = 10 km/hr.
Ans. 45	(c):
	From equation (i), $10 - y = 8 \Rightarrow y = 2$
Ans. 46	(c): In \triangle OPQ, we have
	$\tan 60^\circ = \frac{PQ}{PO}$ $\Rightarrow \sqrt{3} = \frac{20}{PO}$
	$\Rightarrow PO = \frac{20}{\sqrt{3}} m$
Ans. 47	(b): In ΔORS , we have
	$\tan 30^\circ = \frac{\text{RS}}{\text{OR}} \Rightarrow \frac{1}{\sqrt{3}} = \frac{20}{\text{OR}} \Rightarrow \text{OR} = 20\sqrt{3} \text{ m}$
Ans. 48	(d): Clearly, width of the road = PR

	$= PO + OR = \left(\frac{20}{\sqrt{3}} + 20\sqrt{3}\right)m$
	$= 20 \left(\frac{4}{\sqrt{3}}\right) m = \frac{80}{\sqrt{3}} m = 46.24 m$
Ans. 49	(a)
	In \triangle OPQ, if \angle POQ = 45°, then tan 45° = $\frac{PQ}{PO} \Rightarrow 1 = \frac{20}{PO} \Rightarrow PO = 20 \text{ m}$
Ans. 50	(b)