

Board -CBSE

Class -10th

Topic - Real Number

(1) Euclid's Division Lemma:

Theorem: Given positive integers a and b, there exist unique integers q and r satisfying $a = bq + r, 0 \le r < b$

(2) Euclid's division algorithm:

To obtain the HCF of two positive integers, say c and d, with c > d, follow the steps below:

Step 1: Apply Euclid's division lemma, to c and d. So, we find whole numbers, q, and r such that c = dq + r, $0 \le r < d$

Step 2: If r = 0, d is the HCF of c and d. If $r \neq 0$, apply the division lemma to d and r.

Step 3: Continue the process till the remainder is zero. The divisor at this stage will be the required HCF.

Example: Use Euclid's division algorithm to find the HCF of 135 and 225.

Step 1: Here 225 > 135, on applying the division lemma to 225 and 135,

we get $225 = 135 \times 1 + 90$

Step 2: Since, remainder $\neq 0$, we again apply division lemma to 135 and 90,

we get $135 = 90 \times 1 + 45$

Step 3: Again, applying division lemma to 90 and 45, we get $90 = 45 \times 2 + 0$

The remainder has become zero. And since the divisor at this step is 45, the HCF of 135 and 225 is 45.

(3) The Fundamental Theorem of Arithmetic

Theorem; Every composite number can be expressed (factorized) as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur. In general, given a composite number x, we factorise it as $x=p_1\,p_2\,...\,p_n$, where $p_1,p_2,...,p_n$ are primes and written in ascending order, i.e., $p_1 \leq p_2 \leq ... \leq p_n$. If we combine the same primes, we will get powers of primes.

For Example: The prime factors of $32760 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 13 = 2^3 \times 3^2 \times 5 \times 7 \times 13$

For Example Find the HCF and LCM of 96 and 404 by the prime factorization method.

The prime factorization of 96 is $2^5 \times 3$. And that of 404 is $2^2 \times 101$.

Hence, HCF of 96 and 404 will be $2^2 = 4$.

Now, LCM
$$(96, 404) = (96 \times 404)/(HCF(96, 404)) = (96 \times 404)/4 = 9696$$

(4) Revisiting Irrational Numbers:

Irrational Number: Irrational numbers are the numbers that cannot be written in p/q form, where p and q are integers and $q \ne 0$.

Theorem 1: Let p be a prime number. If p divides a^2 , then p divides a, where a is a positive integer.

Proof: Suppose the prime factorization of a is as follows:

- (i) $a = p_1 p_2 \dots p_n$, where $p_1, p_2 \dots p_n$ are primes.
- (ii) On squaring both the sides, we get,

(iii)
$$a^2 = (p_1 p_2 \dots p_n)(p_1 p_2 \dots p_n) = p_1^2 \dots p_n^2$$

- (iv) It is given that p divides a^2 . Hence, we can say that p is one of the prime factors of a^2 as per the Fundamental Theorem of Arithmetic.
- (v) However, as per the uniqueness part of the Fundamental Theorem of Arithmetic, we can deduce that the only prime factors of a^2 are $p_1p_2...p_n$. Thus, p is one of $p_1p_2...p_m$. Since, $a=p_1,p_2...p_n$, p divides a.

Theorem 2: $\sqrt{2}$ is irrational.

Proof: We shall start by assuming $\sqrt{2}$ as rational. In other words, we need to find integers x and y such that $\sqrt{2} = x/y$

- (i) Let x and y have a common factor other than 1, and so we can divide by that common factor and assume that x and y are co-prime. So, $y\sqrt{2} = x$
- (ii) Squaring both sides, we get, $2y^2 = x^2$.
- (iii) Thus, 2 divides x^2 and by theorem, we can say that 2 divides x.
- (iv) Hence, x = 2z for some integer z.
- (v) Substituting x, we get, $2x^2 = 4z^2e \cdot y^2 = 4z^2$; which means y^2 is divisible by 2, and so y will also be divisible by 2.
- (vi) Now, from theorem, x and y will have 2 as a common factor. But, it is opposite to the fact

that x and y are co-prime.

(vii) Hence, we can conclude $\sqrt{2}$ is irrational.

Let us assume $6 + \sqrt{2}$ to be rational.

Therefore, we must find two integers a, b ($b \ne 0$) such that $6 + \sqrt{2} = \frac{a}{b}$ i. e. $\sqrt{2} = \frac{a}{b} - 6$

Since a and b are integers, a/b-6 is also rational and hence $\sqrt{2}$ must be rational.

Now, this contradicts the fact that $\sqrt{2}$ is irrational.

Hence, $6 + \sqrt{2}$ is irrational.

(5) Revisiting Rational Numbers and Their Decimal Expansions:

Theorem 1: Let x be a rational number whose decimal expansion terminates. Then x can be expressed in the form, p/q where p and q are co-prime, and the prime factorization of q is of the form $2^n 5^m$, where n, m are non-negative integers.

Example:
$$13/125 = 13/5^3 = (13 \times 2^3)/(2^3 \times 5^3) = 104/10^3 = 0.104$$

Theorem 2: Let x = p/q be a rational number, such that the prime factorization of q is of the form $2^n 5^m$, where n and m are non-negative integers. Then x has a decimal expansion that terminates.

Theorem 3; Let x = p/q be a rational number, such that the prime factorization of q is not of the form $2^n 5^m$, where n and m are non-negative integers. Then, x has a decimal expansion which is non-terminating repeating (recurring).

Example: Without actually performing the long division, state whether 6/15 will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

The prime factorization of 6/15 can be written as

$$6/15 = (2\times3)/(3\times5) = 2/5$$

Here, the denominator is of the form 5^n .

Hence, the decimal expansion of 6/15 is terminating.

Example 1: Show that any positive odd integer is of the form 4q + 1 or 4q + 3, where q is some integer.

Let a be any positive odd integer. And we apply the division algorithm with a and b=4. As $0 \le r < 4$, the possible remainders could be 0, 1, 2 and 3.

So, a can be 4q, or 4q + 1, or 4q + 2, or 4q + 3, where q is the quotient.

Now, since a is odd, so a cannot be 4q or 4q + 2 (as both are divisible by 2).

Hence, any odd integer is of the form 4q + 1 or 4q + 3.

Example 2: Check whether 6^n can end with the digit 0 for any natural number n.

If a number ends with digit 0, then, it must be divisible by 10, or in other words, it will be divisible by 2 and 5 as $10 = 2 \times 5$

Now, prime factorization of $6^n = (2 \times 3)^n$

Here, 5 is not in the prime factorization of 6^n . Hence, for any value of n, 6^n will not be divisible by 5. Thus, 6^n cannot end with the digit 0 for any natural number n.